A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system

被引:47
作者
Lin, Liyong [1 ]
Huang, Sheng [1 ]
Kang, Minglei [1 ]
Hiltunen, Petri [2 ]
Vanderstraeten, Reynald [2 ]
Lindberg, Jari [2 ]
Siljamaki, Sami [2 ]
Wareing, Todd [2 ]
Davis, Ian [2 ]
Barnett, Allen [2 ]
McGhee, John [2 ]
Simone, Charles B., II [1 ]
Solberg, Timothy D. [1 ]
McDonough, James E. [1 ]
Ainsley, Christopher [1 ]
机构
[1] Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA
[2] Varian Med Syst, Palo Alto, CA USA
来源
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS | 2017年 / 18卷 / 02期
关键词
AcurosPT; commissioning; Monte Carlo dose calculation; pencil beam scanning; proton therapy; LOW-DOSE ENVELOPE; QUALITY-ASSURANCE; SPOT PROFILES; THERAPY; SIMULATIONS; MODEL; RADIOTHERAPY; CALIBRATION; VALIDATION; TOPAS;
D O I
10.1002/acm2.12043
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
AcurosPT is a Monte Carlo algorithm in the Eclipse 13.7 treatment planning system, which is designed to provide rapid and accurate dose calculations for proton therapy. Computational run-time in minimized by simplifying or eliminating less significant physics processes. In this article, the accuracy of AcurosPT was benchmarked against both measurement and an independent MC calculation, TOPAS. Such a method can be applied to any new MC calculation for the detection of potential inaccuracies. To validate multiple Coulomb scattering (MCS) which affects primary beam broadening, single spot profiles in a Solidwater((R)) phantom were compared for beams of five selected proton energies between AcurosPT, measurement and TOPAS. The spot Gaussian sigma in AcurosPT was found to increase faster with depth than both measurement and TOPAS, suggesting that the MCS algorithm in AcurosPT overestimates the scattering effect. To validate AcurosPT modeling of the halo component beyond primary beam broadening, field size factors (FSF) were compared for multi-spot profiles measured in a water phantom. The FSF for small field sizes were found to disagree with measurement, with the disagreement increasing with depth. Conversely, TOPAS simulations of the same FSF consistently agreed with measurement to within 1.5%. The disagreement in absolute dose between AcurosPT and measurement was smaller than 2% at the mid-range depth of multi-energy beams. While AcurosPT calculates acceptable dose distributions for typical clinical beams, users are cautioned of potentially larger errors at distal depths due to overestimated MCS and halo implementation.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 33 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 2011, MCNPX USERS MANUAL V
[3]   On the parametrization of lateral dose profiles in proton radiation therapy [J].
Bellinzona, V. E. ;
Ciocca, M. ;
Embriaco, A. ;
Fontana, A. ;
Mairani, A. ;
Mori, M. ;
Parodi, K. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (05) :484-492
[4]   Fast 2D phantom dosimetry for scanning proton beams [J].
Boon, SN ;
van Luijk, P ;
Schippers, JM ;
Meertens, H ;
Denis, JM ;
Vynckier, S ;
Medin, J ;
Grusell, E .
MEDICAL PHYSICS, 1998, 25 (04) :464-475
[5]   Technical Note: Spot characteristic stability for proton pencil beam scanning [J].
Chen, Chin-Cheng ;
Chang, Chang ;
Moyers, Michael F. ;
Gao, Mingcheng ;
Mah, Dennis .
MEDICAL PHYSICS, 2016, 43 (02) :777-782
[6]   Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems [J].
Farr, J. B. ;
Dessy, F. ;
De Wilde, O. ;
Bietzer, O. ;
Schoenenberg, D. .
MEDICAL PHYSICS, 2013, 40 (07)
[7]   Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning [J].
Fracchiolla, F. ;
Lorentini, S. ;
Widesott, L. ;
Schwarz, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (21) :8601-8619
[8]   Proton beam monitor chamber calibration [J].
Goma, C. ;
Lorentini, S. ;
Meer, D. ;
Safai, S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (17) :4961-4971
[9]   Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients [J].
Grassberger, C. ;
Lomax, Anthony ;
Paganetti, H. .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (02) :633-645
[10]   A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4 [J].
Grevillot, L. ;
Bertrand, D. ;
Dessy, F. ;
Freud, N. ;
Sarrut, D. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (16) :5203-5219