Robust Poisson Multi-Bernoulli Mixture Filter With Unknown Detection Probability

被引:23
|
作者
Li, Guchong [1 ]
Kong, Lingjiang [1 ]
Yi, Wei [1 ]
Li, Xiaolong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Radio frequency; Standards; Clutter; Radar tracking; Training data; Simulation; Robustness; Beta-Gaussian mixture; detection probability; Poisson multi-Bernoulli mixture; RANDOM FINITE SETS; TARGET TRACKING; PHD FILTERS; DERIVATION; ORDER;
D O I
10.1109/TVT.2020.3047107
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a robust Poisson multi-Bernoulli mixture (R-PMBM) filter immune to the unknown detection probability. In a majority of multi-object scenarios, the prior knowledge of detection probability is usually uncertain, which is often estimated offline from the training data. In such cases, online filtering is always unfeasible or unrealistic, otherwise, significant parameter mismatches will result in biased estimates (e.g., state and cardinality of objects). As a consequence, the ability of adaptively estimating the detection probability for a sensor is essential in practice. Based on the analysis, we detail how the detection probability can be estimated accompanied with the state estimates. Besides, the closed-form solutions to the proposed method are derived by means of approximating the intensity of Poisson random finite set (RFS) to a Beta-Gaussian mixture (BGM) form and density of Bernoulli RFS to a single Beta-Gaussian form, named BGM-PMBM filter. Simulation results demonstrate the effectiveness and robustness of the proposed method.
引用
收藏
页码:886 / 899
页数:14
相关论文
共 50 条
  • [1] Robust Poisson Multi-Bernoulli Filter With Unknown Clutter Rate
    Si, Weijian
    Zhu, Hongfan
    Qu, Zhiyu
    IEEE ACCESS, 2019, 7 : 117871 - 117882
  • [2] Extended target trajectory Poisson multi-Bernoulli mixture filters with unknown detection probability
    Xue, Qiutiao
    Liao, Guisheng
    Zheng, Xiangfei
    Wu, Sunyong
    DIGITAL SIGNAL PROCESSING, 2024, 150
  • [3] Bernoulli merging for the Poisson multi-Bernoulli mixture filter
    Fontana, Marco
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 262 - 269
  • [4] Robust Poisson Multi-Bernoulli Mixture Filter With Inaccurate Process and Measurement Noise Covariances
    Li, Wenjuan
    Gu, Hong
    Su, Weimin
    IEEE ACCESS, 2020, 8 : 52209 - 52220
  • [5] Multiscan implementation of the trajectory poisson multi-Bernoulli mixture filter
    Xia, Yuxuan
    Granström, Karl
    Svensson, Lennart
    García-Fernández, Ángel F.
    Williams, Jason L.
    Journal of Advances in Information Fusion, 2019, 14 (02): : 213 - 235
  • [6] Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation
    Garcia-Fernandez, Angel F.
    Williams, Jason L.
    Granstrom, Karl
    Svensson, Lennart
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) : 1883 - 1901
  • [7] Robust Poisson multi-Bernoulli mixture filter using adaptive birth distributions for extended targets
    Wu, Sunyong
    Zhou, Yusong
    Xie, Yun
    Xue, Qiutiao
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [8] A Partitioned Poisson Multi-Bernoulli Filter
    Su, Zhenzhen
    Tian, Cong
    Ji, Hongbing
    Zhang, Yongquan
    IEEE SENSORS JOURNAL, 2023, 23 (14) : 16002 - 16012
  • [9] Extended Target Marginal Distribution Poisson Multi-Bernoulli Mixture Filter
    Du, Haocui
    Xie, Weixin
    SENSORS, 2020, 20 (18) : 1 - 15
  • [10] A Poisson Multi-Bernoulli Mixture Filter for Coexisting Point and Extended Targets
    Garcia-Fernandez, Angel
    Williams, Jason
    Svensson, Lennart
    Xia, Yuxuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 2600 - 2610