Continuity Properties of the Solution Map for the Euler-Poisson Equation

被引:3
作者
Holmes, J. [1 ]
Tiglay, F. [2 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Ohio State Univ, Newark, OH 43055 USA
关键词
NONUNIFORM DEPENDENCE; CAUCHY-PROBLEM; CH EQUATION;
D O I
10.1007/s00021-017-0343-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the continuity properties of the data-to-solution map for the modified Euler-poisson equation. We show that for initial data in the Sobolev space H-s, s > 3/2, the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H-gamma topology for s > gamma and find that the data-to-solution map is Holder continuous.
引用
收藏
页码:757 / 769
页数:13
相关论文
共 15 条
[1]  
Chen RM, 2013, MATH ANN, V357, P1245, DOI 10.1007/s00208-013-0939-9
[2]  
Himonas AA, 2007, DISCRETE CONT DYN-A, V19, P515
[3]   Holder Continuity for the Fokas-Olver-Rosenau-Qiao Equation [J].
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (06) :1105-1124
[4]   Holder continuity of the solution map for the Novikov equation [J].
Himonas, A. Alexandrou ;
Holmes, John .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[5]   Non-Uniform Dependence for the Periodic CH Equation [J].
Himonas, A. Alexandrou ;
Kenig, Carlos ;
Misiolek, Gerard .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (06) :1145-1162
[6]  
Himonas AA, 2009, DIFFER INTEGRAL EQU, V22, P201
[7]   Non-Uniform Dependence on Initial Data of Solutions to the Euler Equations of Hydrodynamics [J].
Himonas, A. Alexandrou ;
Misiolek, Gerard .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (01) :285-301
[8]  
Holmes J., SIAM J MATH ANAL
[9]   CAUCHY-PROBLEM FOR QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEMS [J].
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :181-205
[10]   Nonuniform dependence on initial data for compressible gas dynamics: The periodic Cauchy problem [J].
Keyfitz, B. L. ;
Tiglay, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (10) :6494-6511