An Energy Efficient System for Touch Modality Classification in Electronic Skin Applications

被引:9
作者
Osta, M. [1 ]
Ibrahim, A. [1 ]
Magno, M. [2 ]
Eggimann, M. [2 ]
Pullini, A. [2 ]
Gastaldo, P. [1 ]
Valle, M. [1 ]
机构
[1] Univ Genoa, DITEN, Genoa, Italy
[2] Swiss Fed Inst Technol, D ITET, Zurich, Switzerland
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2019年
关键词
Touch Modality Classification; Energy Efficient Embedded Machine Learning; Parallel Ultra Low Power Platform;
D O I
10.1109/iscas.2019.8702113
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electronic-skin aiming to mimic human skin is becoming a reality and systems able to process data close to the sensors are required to reduce latency and power consumption. This paper presents the design and implementation of an energy efficient smart system for tactile sensing based on a RISC-V parallel ultra-low power platform (PULP). The PULP processor, called Mr. Wolf, performs the on-board classification of different touch modalities. This demonstrates the promising use of on-board classification for emerging robot and prosthetic applications. Experimental results demonstrate the effectiveness of the platform on improving the energy efficiency of the online classification. In our experiments, Mr. Wolf runs 3.6 times faster than an ARM Cortex M4F (STM32F40), consuming only 28 mW. The proposed platform achieves 15x better energy efficiency, than the classification done on the STM32F40, consuming only 81mJ per classification.
引用
收藏
页数:4
相关论文
共 22 条
[1]  
[Anonymous], J LOW POWER ELECT
[2]   Accelerated Visual Context Classification on a Low-Power Smartwatch [J].
Conti, Francesco ;
Palossi, Daniele ;
Andri, Renzo ;
Magno, Michele ;
Benini, Luca .
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2017, 47 (01) :19-30
[3]   Distributed Sensing and Stimulation Systems for Sense of Touch Restoration in Prosthetics [J].
Fares, H. ;
Seminara, L. ;
Ibrahim, A. ;
Franceschi, M. ;
Pinna, L. ;
Valle, M. ;
Dosen, S. ;
Farina, D. .
2017 FIRST NEW GENERATION OF CAS (NGCAS), 2017, :177-180
[4]   A tensor-based approach to touch modality classification by using machine learning [J].
Gastaldo, P. ;
Pinna, L. ;
Seminara, L. ;
Valle, M. ;
Zunino, R. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 63 :268-278
[5]   A Tensor-Based Pattern-Recognition Framework for the Interpretation of Touch Modality in Artificial Skin Systems [J].
Gastaldo, Paolo ;
Pinna, Luigi ;
Seminara, Lucia ;
Valle, Maurizio ;
Zunino, Rodolfo .
IEEE SENSORS JOURNAL, 2014, 14 (07) :2216-2225
[6]  
Ibrahim A, 2018, IEEE I C ELECT CIRC, P845, DOI 10.1109/ICECS.2018.8617877
[7]   Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing [J].
Ibrahim, Ali ;
Valle, Maurizio .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (11) :3897-3906
[8]   Periodontal Diseases: Bug Induced, Host Promoted [J].
Khan, Shariq A. ;
Kong, Eric F. ;
Meiller, Timothy F. ;
Jabra-Rizk, Mary Ann .
PLOS PATHOGENS, 2015, 11 (07)
[9]   Energy efficient system for tactile data decoding using an ultra-low power parallel platform [J].
Magno, M. ;
Ibrahim, A. ;
Pullini, A. ;
Valle, M. ;
Benini, L. .
2017 FIRST NEW GENERATION OF CAS (NGCAS), 2017, :17-20
[10]  
Magno M, 2017, 2017 7TH IEEE INTERNATIONAL WORKSHOP ON ADVANCES IN SENSORS AND INTERFACES (IWASI), P32, DOI 10.1109/IWASI.2017.7974208