A note on parallel sampling in Markov graphs

被引:0
作者
Bauer, Verena [1 ]
Fuerlinger, Karl [2 ]
Kauermann, Goeran [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Stat, Ludwigstr 33, D-80539 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Munich Network Management Team, Oettingenstr 67, D-80538 Munich, Germany
关键词
Parallel computing; Network data; Exponential random graph model; Markov chain Monte Carlo; EXPONENTIAL FAMILY; MODELS; SIMULATION;
D O I
10.1007/s00180-019-00880-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper proposes the use of parallel computing for Markov graphs as a subclass of exponential random graph models where the network statistics induce a conditional independence structure amongst the edges of the network. This conditional independence allows simulation of edges in parallel using multiple computing cores. Simulation in Markov models is helpful, since parameter estimation cannot be carried out analytically but requires simulation-based routines such as Markov chain Monte Carlo. In particular in large networks this can be computationally very demanding or even infeasible. Therefore, numerical enhancements are useful to accelerate computation.
引用
收藏
页码:1087 / 1107
页数:21
相关论文
共 50 条
  • [41] Note on DNA Analysis and Redesigning Using Markov Chain
    Zakarczemny, Maciej
    Zajecka, Malgorzata
    GENES, 2022, 13 (03)
  • [42] Optimal Scheduling of Task Graphs on Parallel Systems
    Shahul, Ahmed Zaki Semar
    Sinnen, Oliver
    PDCAT 2008: NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2008, : 323 - +
  • [43] Learning LWF Chain Graphs: A Markov Blanket Discovery Approach
    Javidian, Mohammad Ali
    Valtorta, Marco
    Jamshidi, Pooyan
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1069 - 1078
  • [44] An aggregation method of Markov graphs for the reliability analysis of hybrid systems
    Schoenig, R
    Aubry, JF
    Cambois, T
    Hutinet, T
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (02) : 137 - 148
  • [45] Lattice Gaussian Sampling by Markov Chain Monte Carlo: Bounded Distance Decoding and Trapdoor Sampling
    Wang, Zheng
    Ling, Cong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3630 - 3645
  • [46] Parallel application sampling for accelerating MPSoC simulation
    Melhem Tawk
    Khaled Z. Ibrahim
    Smail Niar
    Design Automation for Embedded Systems, 2010, 14 : 367 - 387
  • [47] Parallel application sampling for accelerating MPSoC simulation
    Tawk, Melhem
    Ibrahim, Khaled Z.
    Niar, Smail
    DESIGN AUTOMATION FOR EMBEDDED SYSTEMS, 2010, 14 (04) : 367 - 387
  • [48] Orthogonal parallel MCMC methods for sampling and optimization
    Martino, L.
    Elvira, V.
    Luengo, D.
    Corander, J.
    Louzada, F.
    DIGITAL SIGNAL PROCESSING, 2016, 58 : 64 - 84
  • [49] Parallel MCMC with Generalized Elliptical Slice Sampling
    Nishihara, Robert
    Murray, Iain
    Adams, Ryan P.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2087 - 2112
  • [50] Parallel Markov chain Monte Carlo for Bayesian hierarchical models with big data, in two stages
    Wei, Zheng
    Conlon, Erin M.
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (11) : 1917 - 1936