Local mirror symmetry and the sunset Feynman integral

被引:80
作者
Bloch, Spencer [1 ]
Kerr, Matt [2 ]
Vanhove, Pierre [3 ,4 ]
机构
[1] 5765 S Blackstone Ave, Chicago, IL 60637 USA
[2] Washington Univ, Dept Math, Campus Box 1146, St Louis, MO 63130 USA
[3] Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Univ Paris Saclay, CEA, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
DIFFERENTIAL-EQUATIONS; HODGE STRUCTURE; AMPLITUDES; DIAGRAMS; GRAPH; IDENTITIES; SPACE;
D O I
10.4310/ATMP.2017.v21.n6.a1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the sunset Feynman integral defined as the scalar two-point self-energy at two-loop order in a two dimensional space-time. We firstly compute the Feynman integral, for arbitrary internal masses, in terms of the regulator of a class in the motivic cohomology of a 1-parameter family of open elliptic curves. Using an Hodge theoretic (B-model) approach, we show that the integral is given by a sum of elliptic dilogarithms evaluated at the divisors determined by the punctures. Secondly we associate to the sunset elliptic curve a local non-compact Calabi-Yau 3-fold, obtained as a limit of elliptically fibered compact Calabi-Yau 3-folds. By considering the limiting mixed Hodge structure of the Batyrev dual A-model, we arrive at an expression for the sunset Feynman integral in terms of the local Gromov-Witten prepotential of the del Pezzo surface of degree 6. This expression is obtained by proving a strong form of local mirror symmetry which identifies this prepotential with the second regulator period of the motivic cohomology class.
引用
收藏
页码:1373 / 1453
页数:81
相关论文
共 45 条
[21]   On the evaluation of a certain class of Feynman diagrams in x-space:: Sunrise-type topologies at any loop order [J].
Groote, S. ;
Koerner, J. G. ;
Pivovarov, A. A. .
ANNALS OF PHYSICS, 2007, 322 (10) :2374-2445
[22]   A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques [J].
Groote, S. ;
Koerner, J. G. ;
Pivovarov, A. A. .
EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (07) :1-6
[23]   Lectures on differential equations for Feynman integrals [J].
Henn, Johannes M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (15)
[24]   Multiloop Integrals in Dimensional Regularization Made Simple [J].
Henn, Johannes M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[25]  
Hori K., 2003, MIRROR SYMMETRY, V1
[26]  
Hosono S., 2006, Mirror Symmetry. V, V38, P405
[27]   QUANTUM COHOMOLOGY AND PERIODS [J].
Iritani, Hiroshi .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) :2909-2958
[28]  
Katz S., 1999, MATH SURVEYS MONOGRA, V68
[29]   Dimers and amoebae [J].
Kenyon, Richard ;
Okounkov, Andrei ;
Sheffield, Scott .
ANNALS OF MATHEMATICS, 2006, 163 (03) :1019-1056
[30]   The Abel-Jacobi map for higher Chow groups [J].
Kerr, M ;
Lewis, JD ;
Müller-Stach, S .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :374-396