Local mirror symmetry and the sunset Feynman integral

被引:80
作者
Bloch, Spencer [1 ]
Kerr, Matt [2 ]
Vanhove, Pierre [3 ,4 ]
机构
[1] 5765 S Blackstone Ave, Chicago, IL 60637 USA
[2] Washington Univ, Dept Math, Campus Box 1146, St Louis, MO 63130 USA
[3] Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[4] Univ Paris Saclay, CEA, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
DIFFERENTIAL-EQUATIONS; HODGE STRUCTURE; AMPLITUDES; DIAGRAMS; GRAPH; IDENTITIES; SPACE;
D O I
10.4310/ATMP.2017.v21.n6.a1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the sunset Feynman integral defined as the scalar two-point self-energy at two-loop order in a two dimensional space-time. We firstly compute the Feynman integral, for arbitrary internal masses, in terms of the regulator of a class in the motivic cohomology of a 1-parameter family of open elliptic curves. Using an Hodge theoretic (B-model) approach, we show that the integral is given by a sum of elliptic dilogarithms evaluated at the divisors determined by the punctures. Secondly we associate to the sunset elliptic curve a local non-compact Calabi-Yau 3-fold, obtained as a limit of elliptically fibered compact Calabi-Yau 3-folds. By considering the limiting mixed Hodge structure of the Batyrev dual A-model, we arrive at an expression for the sunset Feynman integral in terms of the local Gromov-Witten prepotential of the del Pezzo surface of degree 6. This expression is obtained by proving a strong form of local mirror symmetry which identifies this prepotential with the second regulator period of the motivic cohomology class.
引用
收藏
页码:1373 / 1453
页数:81
相关论文
共 45 条
[1]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[2]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[3]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[4]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
[5]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[6]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[7]   Feynman amplitudes and limits of heights [J].
Amini, O. ;
Bloch, S. ;
Burgos Gil, J. I. ;
Fresan, J. .
IZVESTIYA MATHEMATICS, 2016, 80 (05) :813-848
[8]  
[Anonymous], ARXIV13081697HEPTH
[9]   Feynman diagrams and differential equations [J].
Argeri, Mario ;
Mastrolia, Pierpaolo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (24) :4375-4436
[10]   TOPOLOGICAL FIELD-THEORY AND RATIONAL CURVES [J].
ASPINWALL, PS ;
MORRISON, DR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) :245-262