Comparison of hysteresis current controllers using nonsmooth Lyapunov functions

被引:0
作者
Cavini, Alessandro [1 ]
Rossi, Carlo [1 ]
Tilli, Andrea [1 ]
机构
[1] Univ Bologna, DEIS, Dept Elect Comp & Syst Sci, CASY,Ctr Res Complex Automated Syst G Evangelisti, I-40136 Bologna, Italy
来源
2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8 | 2005年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariable hysteresis current controllers for three-phases inductive loads fed by means of voltage source inverters are considered in this paper. The stability of three control strategies presented in literature ([1], [2] and [3]) is rigorously analyzed by means of nonsmooth Lyapunov function and keeping into account the switching nature of the considered solutions. The main aim of this analysis is to enlighten the different robustness properties guaranteed by the aforementioned solutions with respect to typical disturbances for this kind of systems.
引用
收藏
页码:3982 / 3987
页数:6
相关论文
共 50 条
[21]   Vector active filter without current hysteresis controllers [J].
Nava-Segura, A ;
Linares-Flores, J ;
Mino-Aguilar, G .
PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOL 1 AND 2, 2000, :84-89
[22]   On Separable Quadratic Lyapunov Functions for Convex Design of Distributed Controllers [J].
Furieri, Luca ;
Zheng, Yang ;
Papachristodoulou, Antonis ;
Kamgarpour, Maryam .
2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, :42-49
[23]   Numerical Calculation of Nonsmooth Control Lyapunov Functions via Piecewise Affine Approximation [J].
Baier, Robert ;
Braun, Philipp ;
Gruene, Lars ;
Kellett, Christopher M. .
IFAC PAPERSONLINE, 2019, 52 (16) :370-375
[24]   Enhancing Position Tracking of Hybrid Stepper Motors Using Lyapunov-Based Current Controllers [J].
Li, Caijie ;
Tang, Shengchang ;
Yin, Mengchuang ;
Zhao, Xuan ;
You, Hui .
ELECTRONICS, 2025, 14 (10)
[25]   Lyapunov function based design of robust fuzzy controllers for uncertain nonlinear systems: Distinct Lyapunov functions [J].
Leung, FHF ;
Lam, HK ;
Tam, PKS .
1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, :577-582
[26]   Causal Gain-scheduled output feedback controllers using parameter-dependent Lyapunov Functions [J].
Sato, Masayuki ;
Peaucelle, Dimitri .
AUTOMATICA, 2021, 129
[27]   On the stability of nonlinear differential equations via time-varying nonsmooth Lyapunov functions [J].
Phat, VN ;
Linh, NM .
DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, :159-167
[28]   Lyapunov Stable Teleoperation Controllers Using Passivity Analysis [J].
Annamraju, Srikar ;
Pediredla, Vijay Kumar ;
Thondiyath, Asokan .
IFAC PAPERSONLINE, 2020, 53 (01) :435-440
[29]   Using chaos synchronization to estimate the largest Lyapunov exponent of nonsmooth systems [J].
Stefanski, A ;
Kapitaniak, T .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) :207-215
[30]   A comparison of three methods of constructing Lyapunov functions [J].
Rumyantsev, VV .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (06) :873-877