ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE

被引:23
作者
Elliott, Charles M. [1 ]
Stinner, Bjoern
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
Moving surface; surface partial differential equation; weighted Sobolev space; asymptotic analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT-METHOD; PARABOLIC EQUATIONS; GENERAL GEOMETRIES; IMPLICIT SURFACES; THIN DOMAINS; PDES;
D O I
10.1142/S0218202509003620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A diffuse interface model for an advection diffusion equation on a moving surface is formulated involving a small parameter epsilon related to the thickness of the interfacial layer. The coefficient functions degenerate on the boundary of the diffuse interface. In appropriately weighted Sobolev spaces, existence and uniqueness of weak solutions is shown. Using energy methods the convergence of solutions to the diffuse interface model to the solution to the equation on the moving surface as epsilon -> 0 is proved. The approach is intended to be applied to phase field models describing the surface motion. Among other problems we have surfactants on liquid-liquid interfaces and species diffusion on moving grain boundaries in mind.
引用
收藏
页码:787 / 802
页数:16
相关论文
共 28 条
[1]   Transport and diffusion of material quantities on propagating interfaces via level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (01) :271-288
[2]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[3]  
[Anonymous], 2001, INTERFACE FREE BOUND
[4]  
Antoci F., 2003, Ricerche Mat, V52, P55
[5]   Variational problems and partial differential equations on implicit surfaces [J].
Bertalmío, M ;
Cheng, LT ;
Osher, S ;
Sapiro, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (02) :759-780
[6]  
Blowey J. F., 1991, Eur. J. Appl. Math., V2, P233, DOI DOI 10.1017/S095679250000053X
[7]  
BLOWEY JF, 1993, MATH APPL, V47, P19
[8]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[9]  
DECKELNICK K, IMA J NUMER IN PRESS
[10]   An Eulerian approach to transport and diffusion on evolving implicit surfaces [J].
Dziuk, G. ;
Elliott, C. M. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (01) :17-28