Center projection vortices in continuum Yang-Mills theory

被引:126
|
作者
Engelhardt, M [1 ]
Reinhardt, H [1 ]
机构
[1] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
关键词
Yang-Mills theory; center vortices; maximal center gauge; pontryagin index;
D O I
10.1016/S0550-3213(99)00727-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The maximal center gauge, combined with center projection, is a means to associate Yang-Mills lattice gauge configurations with closed center vortex world-surfaces. This technique allows to study center vortex physics in lattice gauge experiments. In the present work, the continuum analogue of the maximal center gauge is constructed. This sheds neu: light on the meaning of the procedure on the lattice and leads to a sketch of an effective vortex theory in the continuum. Furthermore, the manner in which center vortex configurations generate the Pontryagin index is investigated. The Pontryagin index is built up from self-intersections of the vortex world-surfaces, where it is crucial that the surfaces be globally non-oriented. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 292
页数:44
相关论文
共 50 条
  • [21] Infrared Yang-Mills theory: A renormalization group perspective
    Weber, Axel
    Dall'Olio, Pietro
    Astorga, Francisco
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2016, 25 (07):
  • [22] Quantization of Yang-Mills theory without the Gribov ambiguity
    Zhou, Gao-Liang
    Yan, Zheng-Xin
    Zhang, Xin
    PHYSICS LETTERS B, 2017, 766 : 231 - 237
  • [23] Gauge invariant geometric variables for Yang-Mills theory
    Haagensen, PE
    Johnson, K
    Lam, CS
    NUCLEAR PHYSICS B, 1996, 477 (01) : 273 - 292
  • [24] Regular solutions in f(T)-Yang-Mills theory
    DeBenedictis, Andrew
    Ilijic, Sasa
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [25] Fiber bundles, Yang-Mills theory, and general relativity
    Weatherall, James Owen
    SYNTHESE, 2016, 193 (08) : 2389 - 2425
  • [26] Digital quantum simulation of hadronization in Yang-Mills theory
    Li, De-Sheng
    Wu, Chun-Wang
    Zhong, Ming
    Wu, Wei
    Chen, Ping-Xing
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (06)
  • [27] Center vortex model for the infrared sector of SU(3) Yang-Mills theory: Topological susceptibility
    Engelhardt, M.
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [28] Lattice Yang-Mills theory at finite densities of heavy quarks
    Langfeld, K
    Shin, G
    NUCLEAR PHYSICS B, 2000, 572 (1-2) : 266 - 288
  • [29] INTERSECTION OF YANG-MILLS THEORY WITH GAUGE DESCRIPTION OF GENERAL RELATIVITY
    Kober, Martin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (20):
  • [30] Quantum Abelian Yang-Mills Theory on Riemannian Manifolds with Boundary
    Diaz-Marin, Homero G.
    Oeckl, Robert
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14