Weak-QES extensions of the Calogero model

被引:3
作者
Brihaye, Y [1 ]
Kosinski, P
机构
[1] Univ Mons, Dept Math Phys, B-7000 Mons, Belgium
[2] Univ Lodz, Dept Theoret Phys, PL-90131 Lodz, Poland
关键词
D O I
10.1142/S0217732399002704
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct families of Hamiltonians extending the Calogero model and such that a finite number of eigenvectors can be computed algebraically.
引用
收藏
页码:2579 / 2585
页数:7
相关论文
共 8 条
[2]   A quasi-exactly solvable N-body problem with the sl(N+1) algebraic structure [J].
Hou, XR ;
Shifman, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (19) :2993-3003
[3]   Quasi-exactly-solvable many-body problems [J].
Minzoni, A ;
Rosenbaum, M ;
Turbiner, A .
MODERN PHYSICS LETTERS A, 1996, 11 (24) :1977-1984
[4]   QUANTUM INTEGRABLE SYSTEMS RELATED TO LIE-ALGEBRAS [J].
OLSHANETSKY, MA ;
PERELOMOV, AM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 94 (06) :313-404
[5]   EXACT SOLVABILITY OF THE CALOGERO AND SUTHERLAND MODELS [J].
RUHL, W ;
TURBINER, A .
MODERN PHYSICS LETTERS A, 1995, 10 (29) :2213-2221
[6]   QUANTAL PROBLEMS WITH PARTIAL ALGEBRAIZATION OF THE SPECTRUM [J].
SHIFMAN, MA ;
TURBINER, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (02) :347-365
[7]   QUASI-EXACTLY-SOLVABLE PROBLEMS AND SL(2) ALGEBRA [J].
TURBINER, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (03) :467-474
[8]  
USHVERIDZE AG, 1993, QUASIEXACT SOLVABILI