Bounding the maximum likelihood degree

被引:1
作者
Budur, Nero [1 ,2 ]
Wang, Botong [3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Notre Dame, B-3001 Leuven, Belgium
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
Very affine variety; intersection cohomology; algebraic statistics; maximum likelihood estimation;
D O I
10.4310/MRL.2015.v22.n6.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximum likelihood estimation is a fundamental computational problem in statistics. In this note, we give a bound for the maximum likelihood degree of algebraic statistical models for discrete data. As usual, such models are identified with special very affine varieties. Using earlier work of Franecki and Kapranov, we prove that the maximum likelihood degree is always less or equal to the signed intersection-cohomology Euler characteristic. We construct counterexamples to a bound in terms of the usual Euler characteristic conjectured by Huh and Sturmfels.
引用
收藏
页码:1613 / 1620
页数:8
相关论文
共 6 条
[1]  
[Anonymous], 1990, GRUNDLEHREN MATH WIS
[2]  
Budur N., INT MATH RES NOTICES
[3]   The maximum likelihood degree [J].
Catanese, Fabrizio ;
Hosten, Serkan ;
Khetan, Amit ;
Sturmfels, Bernd .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :671-697
[4]  
Franecki J, 2000, DUKE MATH J, V104, P171
[5]  
Huh J., 2014, LECT NOTES MATH, V2108, P63
[6]   The maximum likelihood degree of a very affine variety [J].
Huh, June .
COMPOSITIO MATHEMATICA, 2013, 149 (08) :1245-1266