Critical properties of the synchronization transition in space-time chaos

被引:63
作者
Ahlers, V [1 ]
Pikovsky, A [1 ]
机构
[1] Univ Potsdam, Dept Phys, D-14415 Potsdam, Germany
关键词
D O I
10.1103/PhysRevLett.88.254101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study two coupled spatially extended dynamical systems which exhibit space-time chaos. The transition to the synchronized state is treated as a nonequilibrium phase transition, where the average synchronization error is the order parameter. The transition in one-dimensional systems is found to be generically in the universality class of the Kardar-Parisi-Zhang equation with a growth-limiting term ("bounded KPZ"). For systems with very strong nonlinearities in the local dynamics, however, the transition is found to be in the universality class of directed percolation.
引用
收藏
页数:4
相关论文
共 38 条
[1]   Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers [J].
Ahlers, V ;
Parlitz, U ;
Lauterborn, W .
PHYSICAL REVIEW E, 1998, 58 (06) :7208-7213
[2]   Synchronization of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency [J].
Amengual, A ;
HernandezGarcia, E ;
Montagne, R ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4379-4382
[3]   Synchronization and directed percolation in coupled map lattices [J].
Bagnoli, F ;
Baroni, L ;
Palmerini, P .
PHYSICAL REVIEW E, 1999, 59 (01) :409-416
[4]   Transition to stochastic synchronization in spatially extended systems [J].
Baroni, L ;
Livi, R ;
Torcini, A .
PHYSICAL REVIEW E, 2001, 63 (03) :362261-362261
[5]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[6]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[7]   Phase chaos in the anisotropic complex Ginzburg-Landau equation [J].
Faller, R ;
Kramer, L .
PHYSICAL REVIEW E, 1998, 57 (06) :R6249-R6252
[8]   Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser [J].
Fischer, I ;
Hess, O ;
Elsasser, W ;
Gobel, E .
EUROPHYSICS LETTERS, 1996, 35 (08) :579-584
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]   Spatiotemporal communication with synchronized optical chaos [J].
García-Ojalvo, J ;
Roy, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5204-5207