Simulated annealing with time-dependent energy function via Sobolev inequalities

被引:13
作者
Lowe, M
机构
[1] Universität Bielefeld, Fakultät für Mathematik, 33501 Bielefeld
关键词
simulated annealing; Sobolev inequalities; spectral gap; Markov processes;
D O I
10.1016/0304-4149(96)00070-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the simulated annealing algorithm with an energy function U-t that depends on time. Assuming some regularity conditions on U-t (especially that U-t does not change too quickly in time), and choosing a logaIithmic cooling schedule for the algorithm, we derive bounds on the Radon-Nikodym density of the distribution of the annealing algorithm at time t with respect to the invariant measure pi(t) at time t. Moreover, we estimate the entrance time of the algorithm into typical subsets V of the state space in terms of pi(t)(V-c).
引用
收藏
页码:221 / 233
页数:13
相关论文
共 21 条
[1]  
Aarts E., 1989, Wiley-Interscience Series in Discrete Mathematics and Optimization
[2]  
CATONI O, 1990, THESIS U PARIS SUD O
[3]   L-2 CONVERGENCE OF TIME NONHOMOGENEOUS MARKOV PROCESSES: I. SPECTRAL ESTIMATES [J].
Deuschel, Jean-Dominique ;
Mazza, Christian .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1012-1056
[4]  
Diaconis P., 1991, Ann. Appl. Probab., P36
[5]  
Fill J. A., 1991, Annals of Applied Probability, V1, P62, DOI 10.1214/aoap/1177005981
[6]  
Freidlin MI, 1984, RANDOM PERTURBATIONS
[7]   SIMULATED ANNEALING WITH TIME-DEPENDENT ENERGY FUNCTION [J].
FRIGERIO, A ;
GRILLO, G .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) :97-116
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[10]  
GOTZE F, 1992, RATE CONVERGENCE SIM