Finding First Integrals Using Normal Forms Modulo Differential Regular Chains

被引:4
作者
Boulier, Francois [1 ]
Lemaire, Francois [1 ]
机构
[1] Univ Lille, CRIStAL, UMR 9189, F-59650 Villeneuve Dascq, France
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2015) | 2015年 / 9301卷
关键词
First integral; linear algebra; differential algebra; nonlinear system;
D O I
10.1007/978-3-319-24021-3_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a definition of polynomial first integrals in the differential algebra context and an algorithm for computing them. The method has been coded in the Maple computer algebra system and is illustrated on the pendulum and the Lotka-Volterra equations. Our algorithm amounts to finding linear dependences of rational fractions, which is solved by evaluation techniques.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 11 条
[1]  
Boulier F., 2004, THE BLAD LIB
[2]  
BOULIER F, 2007, APPL ALGEBRA E UNPUB
[3]  
Boulier F, 2011, LECT NOTES COMPUT SC, V6885, P61, DOI 10.1007/978-3-642-23568-9_6
[4]   A Normal Form Algorithm for Regular Differential Chains [J].
Boulier, Francois ;
Lemaire, Francois .
MATHEMATICS IN COMPUTER SCIENCE, 2010, 4 (2-3) :185-201
[5]  
Boulier F, 2009, APPL ALGEBR ENG COMM, V20, P73, DOI 10.1007/s00200-009-0091-7
[6]  
BUNCH JR, 1974, MATH COMPUT, V28, P231, DOI 10.1090/S0025-5718-1974-0331751-8
[7]   EFFICIENT COMPUTATION OF ZERO-DIMENSIONAL GROBNER BASES BY CHANGE OF ORDERING [J].
FAUGERE, JC ;
GIANNI, P ;
LAZARD, D ;
MORA, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (04) :329-344
[8]  
Gathen J. V. Z., 2013, MODERN COMPUTER ALGE, V3rd
[9]  
Kolchin E.R., 1973, Differential Algebras and Algebraic Groups
[10]  
Ritt JF, 1950, DIFFERENTIAL ALGEBRA