Modeling Forced Convection in Finned Metal Foam Heat Sinks

被引:55
作者
DeGroot, Christopher T. [1 ]
Straatman, Anthony G. [1 ]
Betchen, Lee J. [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
aluminium; computational fluid dynamics; finite volume methods; forced convection; heat conduction; heat sinks; metal foams; stratified flow; thermal conductivity;
D O I
10.1115/1.3103934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A numerical study has been undertaken to explore the details of forced convection heat transfer in finned aluminum foam heat sinks. Calculations are made using a finite-volume computational fluid dynamics (CFD) code that solves for the flow and heat transfer in conjugate fluid/porous/solid domains. The results indicate that using unfinned blocks of porous aluminum results in low convective heat transfer due to the relatively low effective thermal conductivity of the porous aluminum. The addition of aluminum fins to the heat sink significantly enhances the heat transfer with only a moderate pressure drop penalty. The convective enhancement is maximized when thermal boundary layers between adjacent fins merge together and become nearly developed for much of the length of the heat sink. It is found that the heat transfer enhancement is due to increased heat entrainment into the aluminum foam by conduction. A model for the equivalent conductivity of the finned/foam heat sinks is developed using extended surface theory. This model is used to explain the heat transfer enhancement as an increase in equivalent conductivity of the device. The model is also shown to predict the heat transfer for various heat sink geometries based on a single CFD calculation to find the equivalent conductivity of the device. This model will find utility in characterizing heat sinks and in allowing for quick assessments of the effect of varying heat sink properties.
引用
收藏
页码:0210011 / 02100110
页数:10
相关论文
共 8 条
[1]  
Bergman T.L., 2007, Fundamentals of Heat and Mass Transfer
[2]   A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains [J].
Betchen, L ;
Straatman, AG ;
Thompson, BE .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2006, 49 (06) :543-565
[3]   Finned metal foam heat sinks for electronics cooling in forced convection [J].
Bhattacharya, A ;
Mahajan, RL .
JOURNAL OF ELECTRONIC PACKAGING, 2002, 124 (03) :155-163
[4]   Metal foams as compact high performance heat exchangers [J].
Boomsma, K ;
Poulikakos, D ;
Zwick, F .
MECHANICS OF MATERIALS, 2003, 35 (12) :1161-1176
[5]   Forced convection in high porosity metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03) :557-565
[6]   Analytical forced convection modeling of plate fin heat sinks [J].
Teertstra, P ;
Yovanovich, MM ;
Culham, JR .
JOURNAL OF ELECTRONICS MANUFACTURING, 2000, 10 (04) :253-261
[7]   BOUNDARY AND INERTIA EFFECTS ON FLOW AND HEAT-TRANSFER IN POROUS-MEDIA [J].
VAFAI, K ;
TIEN, CL .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1981, 24 (02) :195-203
[8]  
WHITAKER S, 1997, VOLUME AVERAGING TRA