Quasi-exact solvability of Dirac-Pauli equation and generalized Dirac oscillators

被引:49
作者
Ho, CL [1 ]
Roy, P
机构
[1] Tamkang Univ, Dept Phys, Tamsui 25137, Taiwan
[2] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700035, W Bengal, India
关键词
quasi-exact solvability; Dirac-Pauli equation;
D O I
10.1016/j.aop.2004.01.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we demonstrate that neutral Dirac particles in external electric fields, which are equivalent to generalized Dirac oscillators, are physical examples of quasi-exactly solvable systems. Electric field configurations permitting quasi-exact solvability of the system based on the sl(2) symmetry are discussed separately in the spherical, cylindrical, and Cartesian coordinates. Some exactly solvable field configurations are also exhibited. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 37 条
[1]   TOPOLOGICAL QUANTUM EFFECTS FOR NEUTRAL PARTICLES [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :319-321
[2]  
BENITEZ J, 1990, PHYS REV LETT, V64, P1643, DOI 10.1103/PhysRevLett.64.1643
[3]   PROPOSED AHARONOV-CASHER EFFECT - ANOTHER EXAMPLE OF AN AHARONOV-BOHM EFFECT ARISING FROM A CLASSICAL LAG [J].
BOYER, TH .
PHYSICAL REVIEW A, 1987, 36 (10) :5083-5086
[4]   Quasi-exactly solvable radial dirac equations [J].
Brihaye, Y ;
Kosinski, P .
MODERN PHYSICS LETTERS A, 1998, 13 (18) :1445-1452
[5]  
BRUCE S, 1999, QUANTPH9905074
[6]   Planar dirac electron in coulomb and magnetic fields: A bethe ansatz approach [J].
Chiang, CM ;
Ho, CL .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :43-51
[7]   Charged particles in external fields as physical examples of quasi-exactly-solvable models: A unified treatment [J].
Chiang, CM ;
Ho, CL .
PHYSICAL REVIEW A, 2001, 63 (06) :5-062105
[8]   OBSERVATION OF THE TOPOLOGICAL AHARONOV-CASHER PHASE-SHIFT BY NEUTRON INTERFEROMETRY [J].
CIMMINO, A ;
OPAT, GI ;
KLEIN, AG ;
KAISER, H ;
WERNER, SA ;
ARIF, M ;
CLOTHIER, R .
PHYSICAL REVIEW LETTERS, 1989, 63 (04) :380-383
[9]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[10]   ALGEBRAIC PROPERTIES OF THE DIRAC OSCILLATOR [J].
DELANGE, OL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :667-677