On the mechanism of piezoresistivity of carbon nanotube polymer composites

被引:101
作者
Gong, Shen [1 ]
Zhu, Zheng H. [1 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
关键词
Carbon nanotubes; Polymer-matrix composites; Piezoresistivity; ELECTRICAL-PROPERTIES; STRAIN SENSOR; NANOCOMPOSITES; DEFORMATION; CONDUCTIVITY; LENGTH;
D O I
10.1016/j.polymer.2014.06.024
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carbon nanotube (CNT) polymer composites exhibit strong nonlinear and asymmetric piezoresistivity about zero strain in tensile and compressive strain states. The existing models explain the characteristic qualitatively but not quantitatively. This paper attempts to understand the mechanisms of this piezoresistivity by developing a new 3-dimensional percolation CNT network model, where the effect of CNT deformation (wall indentation and tube bending) is considered for the first time. The predicted electrical conductivity and piezoresistivity agree with experiments quantitatively, which reveals that the CNT deformation is a dominant mechanism for the nonlinearity and asymmetry of piezoresistivity of CNT-polymer composites. Parametric studies have been conducted to show the effects of morphology and electrical properties of CNTs, work functions and Poisson's ratio of polymer on the piezoresistivity of CNT-polymer composites for future application in nanosensing composites. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4136 / 4149
页数:14
相关论文
共 65 条
  • [1] Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites
    Alamusi
    Hu, Ning
    Fukunaga, Hisao
    Atobe, Satoshi
    Liu, Yaolu
    Li, Jinhua
    [J]. SENSORS, 2011, 11 (11) : 10691 - 10723
  • [2] Alamusi, 2010, CMC-COMPUT MATER CON, V20, P101
  • [3] Electrical properties and applications of carbon nanotube structures
    Bandaru, Prabhakar R.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (4-5) : 1239 - 1267
  • [4] Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Pan, Y.
    Weng, G. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (23)
  • [5] Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Weng, G. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
  • [6] A novel approach to predict the electrical conductivity of multifunctional nanocomposites
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Pan, Y.
    Weng, G. J.
    [J]. MECHANICS OF MATERIALS, 2012, 46 : 129 - 138
  • [7] Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Meguid, M. J.
    [J]. NANOTECHNOLOGY, 2011, 22 (48)
  • [8] A review and analysis of electrical percolation in carbon nanotube polymer composites
    Bauhofer, Wolfgang
    Kovacs, Josef Z.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) : 1486 - 1498
  • [9] Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites
    Bautista-Quijano, J. R.
    Aviles, F.
    Cauich-Rodriguez, J. V.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (01) : 375 - 382
  • [10] Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models
    Berhan, L.
    Sastry, A. M.
    [J]. PHYSICAL REVIEW E, 2007, 75 (04):