Analysis of PKR Structure by Small-Angle Scattering

被引:39
|
作者
VanOudenhove, Jennifer [1 ]
Anderson, Eric [1 ]
Krueger, Susan [2 ]
Cole, James L. [1 ,3 ]
机构
[1] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA
[2] NIST, Ctr Neutron Res, Gaithersburg, MD 21702 USA
[3] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SAXS; SANS; protein kinase; innate immunity; DOUBLE-STRANDED-RNA; DEPENDENT PROTEIN-KINASE; X-RAY-SCATTERING; INTRINSICALLY UNSTRUCTURED PROTEINS; NEUTRON-SCATTERING; FLEXIBLE PROTEINS; MESSENGER-RNA; ACTIVATION; DIMERIZATION; MECHANISM;
D O I
10.1016/j.jmb.2009.02.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 angstrom. The p(r) distance distribution function exhibits a peak near 30 angstrom, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically Unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:910 / 920
页数:11
相关论文
共 50 条
  • [1] SMALL-ANGLE SCATTERING - DIRECT STRUCTURE-ANALYSIS
    SVERGUN, DI
    FEIGIN, LA
    SCHEDRIN, BM
    ACTA CRYSTALLOGRAPHICA SECTION A, 1982, 38 (NOV): : 827 - 835
  • [2] SMALL-ANGLE SCATTERING AND THE STRUCTURE OF AEROGELS
    EMMERLING, A
    FRICKE, J
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1992, 145 (1-3) : 113 - 120
  • [3] SMALL-ANGLE SCATTERING AND SURFACE STRUCTURE
    LI, YY
    SMOLUCHOWSKI, R
    JOURNAL OF APPLIED PHYSICS, 1955, 26 (01) : 128 - 129
  • [4] DIRECT METHODS OF STRUCTURE-ANALYSIS IN SMALL-ANGLE SCATTERING
    SVERGUN, DI
    STUDIA BIOPHYSICA, 1986, 112 (2-3): : 243 - 254
  • [5] Advances in structure analysis using small-angle scattering in solution
    Svergun, DI
    Koch, MHJ
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (05) : 654 - 660
  • [6] SMALL-ANGLE SCATTERING STUDIES OF THE STRUCTURE OF IONOMERS
    MACKNIGHT, WJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 29 - POLY
  • [7] Analysis of the structure of aqueous ferrofluids by the small-angle neutron scattering method
    V. I. Petrenko
    V. L. Aksenov
    M. V. Avdeev
    L. A. Bulavin
    L. Rosta
    L. Vekas
    V. M. Garamus
    R. Willumeit
    Physics of the Solid State, 2010, 52 : 974 - 978
  • [8] Analysis of the structure of aqueous ferrofluids by the small-angle neutron scattering method
    Petrenko, V. I.
    Aksenov, V. L.
    Avdeev, M. V.
    Bulavin, L. A.
    Rosta, L.
    Vekas, L.
    Garamus, V. M.
    Willumeit, R.
    PHYSICS OF THE SOLID STATE, 2010, 52 (05) : 974 - 978
  • [9] Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering
    Tanaka, R
    Hunt, JE
    Winans, RE
    Thiyagarajan, P
    Sato, S
    Takanohashi, T
    ENERGY & FUELS, 2003, 17 (01) : 127 - 134
  • [10] Small-angle scattering analysis of tetrahedral particles
    Gille, W
    FIBRES & TEXTILES IN EASTERN EUROPE, 2005, 13 (05) : 47 - 50