EFFECTS OF MUTATION BEFORE AND AFTER OFFSPRING SELECTION IN GENETIC PROGRAMMING FOR SYMBOLIC REGRESSION

被引:0
|
作者
Kronberger, Gabriel K. [1 ]
Winkler, Stephan M. [1 ]
Affenzeller, Michael [1 ]
Kommenda, Michael [1 ]
Wagner, Stefan [1 ]
机构
[1] Upper Austria Univ Appl Sci, Josef Ressel Ctr Heurist Optimizat Heureka, Sch Informat Commun & Media, Heurist & Evolut Algorithms Lab, Softwarepk 11, A-4232 Hagenberg, Austria
来源
22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010) | 2010年
关键词
Genetic Programming; Symbolic Regression; Mutation Operators;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In evolutionary algorithms mutation operators increase the genetic diversity in the population. Mutations are undirected and have only a low probability to improve the quality of the manipulated solution. Offspring selection determines if a newly created solution is added to the next generation of the population. By definition, offspring selection is applied after mutation and the effects of mutation are directed and quality-driven. In this paper we propose an alternative variant of genetic programming with offspring selection where mutation is applied to increase genetic diversity after offspring selection. We compare the solution quality achieved by the original algorithm and the new algorithm when applied to a symbolic regression problem. We observe that solutions produced by the new variant have a smaller generalization error and conclude that the proposed variant is better for symbolic regression with linear scaling.
引用
收藏
页码:37 / 42
页数:6
相关论文
共 50 条
  • [21] Genetic Programming for Feature Selection Based on Feature Removal Impact in High-Dimensional Symbolic Regression
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2269 - 2282
  • [22] Symbol Graph Genetic Programming for Symbolic Regression
    Song, Jinglu
    Lu, Qiang
    Tian, Bozhou
    Zhang, Jingwen
    Luo, Jake
    Wang, Zhiguang
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 221 - 237
  • [23] Semantic Linear Genetic Programming for Symbolic Regression
    Huang, Zhixing
    Mei, Yi
    Zhong, Jinghui
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (02) : 1321 - 1334
  • [24] Transformation of CPS coordinates using symbolic regression and genetic programming
    Chou, HJ
    Wu, CH
    Su, WH
    Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2005, : 301 - 306
  • [25] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [26] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [27] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [28] Instance based Transfer Learning for Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3006 - 3013
  • [29] Hessian Complexity Measure for Genetic Programming-Based Imputation Predictor Selection in Symbolic Regression with Incomplete Data
    Al-Helali, Baligh
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GENETIC PROGRAMMING, EUROGP 2020, 2020, 12101 : 1 - 17
  • [30] A Comparative Study on the Numerical Performance of Kaizen Programming and Genetic Programming for Symbolic Regression Problems
    Ferreira, Jimena
    Ines Torres, Ana
    Pedemonte, Martin
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 202 - 207