Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications

被引:29
作者
Vallejo, Javier P. [1 ]
Mercatelli, Luca [2 ]
Martina, Maria Raffaella [2 ]
Di Rosa, Daniele [2 ,3 ]
Dell'Oro, Aldo [4 ]
Lugo, Luis [1 ]
Sani, Elisa [2 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Fis Aplicada, E-36310 Vigo, Spain
[2] CNR, INO Natl Inst Opt, Largo E Fermi 6, I-50125 Florence, Italy
[3] Univ Pisa, Dept Energy Syst Terr & Construct Engn DESTeC, I-56122 Pisa, Italy
[4] Osserv Astrofis Arcetri, INAF, Largo E Fermi 5, I-50125 Florence, Italy
关键词
Direct absorption solar collectors; Concentrating solar power; Solar steam generation; Nanofluids; Graphene nanoplatelets; Optical properties; OPTICAL-PROPERTIES; STEAM-GENERATION; WATER; PERFORMANCE; COLLECTOR; SUSPENSIONS; NANOPARTICLES; OPTIMIZATION; DESALINATION; ENHANCEMENT;
D O I
10.1016/j.renene.2019.04.075
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The optical properties of nanofluids are peculiar and interesting for a variety of applications. Among them, the high light extinction coefficient of nanofluids can be useful in linear parabolic concentrating solar systems, while their properties under high light irradiation intensities can be exploited for direct solar steam generation. The optical characterization of colloids, including the study of non-linear optical properties, is thus a needed step to design the use of such novel materials for solar energy exploitation. In this work, we analysed two different types of nanofluids, consisting of polycarboxylate chemically modified graphene nanoplatelets (P-GnP) and sulfonic acid-functionalized graphene nanoplatelets (SGnP) dispersed in water, at three concentrations from 0.005 wt% to 0.05 wt%. Moderately stable nanofluids were achieved with favourable light extinction properties, as well as a non-linear optical behaviour under high input solar intensities. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 69 条
[1]   Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids [J].
Agromayor, Roberto ;
Cabaleiro, David ;
Pardinas, Angel A. ;
Vallejo, Javier P. ;
Fernandez-Seara, Jose ;
Lugo, Luis .
MATERIALS, 2016, 9 (06)
[2]  
[Anonymous], 2012, G17303 ASTM
[3]   Preparation and evaluation of stable nanofluids for heat transfer application: A review [J].
Babita ;
Sharma, S. K. ;
Gupta, Shipra Mital .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 79 :202-212
[4]   Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube [J].
Bellos, E. ;
Tzivanidis, C. ;
Antonopoulos, K. A. ;
Gkinis, G. .
RENEWABLE ENERGY, 2016, 94 :213-222
[5]   THERMAL AND PHOTOCHEMICAL STUDIES OF SOLAR-ENERGY ABSORBERS DISSOLVED IN HEAT-TRANSFER FLUIDS [J].
BURKE, AR ;
ETTER, DE ;
HUDGENS, CR ;
WIEDENHEFT, CJ ;
WITTENBERG, LJ .
SOLAR ENERGY MATERIALS, 1982, 6 (04) :481-490
[6]   Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid [J].
Delfani, S. ;
Karami, M. ;
Akhavan-Behabadi, M. A. .
RENEWABLE ENERGY, 2016, 87 :754-764
[7]   Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation [J].
Dugaria, Simone ;
Bortolato, Matteo ;
Del Col, Davide .
RENEWABLE ENERGY, 2018, 128 :495-508
[8]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[9]  
Fan XD, 2011, NAT PHOTONICS, V5, P591, DOI [10.1038/nphoton.2011.206, 10.1038/NPHOTON.2011.206]
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191