Some notes on supersolutions of fractional p-Laplace equation

被引:18
作者
Shi, Shaoguang [1 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
关键词
Fractional p-Laplace equation; Superharmonic function; Supersolution; Obstacle problem; SUPERHARMONIC FUNCTIONS; NONLINEAR EQUATIONS; OBSTACLE PROBLEM; SOBOLEV SPACES; REGULARITY; EIGENVALUES; CAPACITIES; BOUNDARY; BREZIS;
D O I
10.1016/j.jmaa.2018.03.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a further understanding of supersolutions to the regional fractional p-Laplace equation. To do so, the obstacle problem and the fractional superharmonic functions associated with this equation are further studied. In particular, we clarify the connections among supersolutions of the fractional p-Laplace equation, the fractional superharmonic functions and solutions to the obstacle problem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1052 / 1074
页数:23
相关论文
共 34 条
  • [1] [Anonymous], 2000, An Introduction to Variational Inequalities and Their Applications
  • [2] [Anonymous], 2006, THEORY APPL FRACTION
  • [3] CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS AND PICONE-TYPE INEQUALITIES
    Brasco, Lorenzo
    Franzina, Giovanni
    [J]. KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) : 769 - 799
  • [4] NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II: EXISTENCE, UNIQUENESS, AND QUALITATIVE PROPERTIES OF SOLUTIONS
    Cabre, Xavier
    Sire, Yannick
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 911 - 941
  • [5] Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
    Cabre, Xavier
    Sire, Yannick
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 23 - 53
  • [6] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461
  • [7] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [8] Costea S, 2007, REV MAT IBEROAM, V23, P1067
  • [9] Local behavior of fractional p-minimizers
    Di Castro, Agnese
    Kuusi, Tuomo
    Palatucci, Giampiero
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05): : 1279 - 1299
  • [10] Nonlocal Harnack inequalities
    Di Castro, Agnese
    Kuusi, Tuomo
    Palatucci, Giampiero
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) : 1807 - 1836