Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times

被引:43
作者
Baltrunas, A
Daley, DJ
Klüppelberg, C
机构
[1] Tech Univ Munich, Ctr Math Sci, D-81373 Garching, Germany
[2] Inst Math & Informat, Vilnius, Lithuania
[3] Australian Natl Univ, Ctr Math & Applicat, MSI, Canberra, ACT 0200, Australia
关键词
GI/GI/1; queue; busy period; subexponential distribution; transient random walk; precise large deviations;
D O I
10.1016/j.spa.2004.01.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a stable GI/GI/1 queue with subexponential service time distribution. Under natural assumptions we derive the tail behaviour of the busy period of this queue. We extend the results known for the regular variation case under minimal conditions. Our method of proof is based on a large deviations result for subexponential distributions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:237 / 258
页数:22
相关论文
共 25 条
[1]   Asymptotics for M/G/1 low-priority waiting-time tail probabilities [J].
Abate, J ;
Whitt, W .
QUEUEING SYSTEMS, 1997, 25 (1-4) :173-233
[2]   Convergence rates for M/G/1 queues and ruin problems with heavy tails [J].
Asmussen, S ;
Teugels, JL .
JOURNAL OF APPLIED PROBABILITY, 1996, 33 (04) :1181-1190
[3]   Sampling at subexponential times, with queueing applications [J].
Asmussen, S ;
Klüppelberg, C ;
Sigman, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 79 (02) :265-286
[4]  
Asmussen S., 2003, Applied Probability and Queues
[5]   Some asymptotic results for transient random walks with applications to insurance risk [J].
Baltrunas, A .
JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) :108-121
[6]  
BALTRUNAS A, 2002, UNPUB 2 ORDER TAIL B
[7]  
BALTRUNAS A, 1995, LITH MATH J, V35, P11
[8]  
Bingham N. H., 1987, Regular Variation
[9]   FUNCTIONS OF PROBABILITY MEASURES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :255-302
[10]  
CLINE DBH, 1986, PROBAB THEORY REL, V72, P529, DOI 10.1007/BF00344720