Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction

被引:440
作者
Xiao, Hai [1 ,2 ]
Shin, Hyeyoung [1 ,2 ]
Goddard, William A., III [1 ,2 ]
机构
[1] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[2] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
density functional theory; B3PW91; PBE; electrocatalysis; reaction mechanism; FREE-ENERGY CALCULATIONS; WATER OXIDATION; ELECTROCHEMICAL REDUCTION; OXYHYDROXIDE ELECTROCATALYSTS; REACTION-MECHANISM; COBALT OXIDES; NEUTRAL PH; 298; K; CO; SURFACES;
D O I
10.1073/pnas.1722034115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The oxygen evolution reaction (OER) is critical to solar production of fuels, but the reaction mechanism underlying the performance for a best OER catalyst, Fe-doped NiOOH [(Ni, Fe)OOH], remains highly controversial. We used grand canonical quantum mechanics to predict the OER mechanisms including kinetics and thus overpotentials as a function of Fe content in (Ni, Fe) OOH catalysts. We find that density functional theory (DFT) without exact exchange predicts that addition of Fe does not reduce the overpotential much. However, DFT with exact exchange predicts dramatic improvement in performance for (Ni, Fe) OOH, leading to an overpotential of 0.42 V and a Tafel slope of 23 mV/decade (dec), in good agreement with experiments, 0.3-0.4 V and 30 mV/dec. We reveal that the high spin d(4) Fe(IV) leads to efficient formation of an active O radical intermediate, while the closed shell d(6) Ni(IV) catalyzes the subsequent O-O coupling, and thus it is the synergy between Fe and Ni that delivers the optimal performance for OER.
引用
收藏
页码:5872 / 5877
页数:6
相关论文
共 40 条
  • [1] Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
    Bajdich, Michal
    Garcia-Mota, Monica
    Vojvodic, Aleksandra
    Norskov, Jens K.
    Bell, Alexis T.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) : 13521 - 13530
  • [2] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652
  • [3] Proton-Electron Transport and Transfer in Electrocatalytic Films. Application to a Cobalt-Based O2-Evolution Catalyst
    Bediako, D. Kwabena
    Costentin, Cyrille
    Jones, Evan C.
    Nocera, Daniel G.
    Saveant, Jean-Michel
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (28) : 10492 - 10502
  • [4] Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel-Borate Thin Film Electrocatalyst
    Bediako, D. Kwabena
    Surendranath, Yogesh
    Nocera, Daniel G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (09) : 3662 - 3674
  • [5] Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst
    Bediako, D. Kwabena
    Lassalle-Kaiser, Benedikt
    Surendranath, Yogesh
    Yano, Junko
    Yachandra, Vittal K.
    Nocera, Daniel G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) : 6801 - 6809
  • [6] Electronic design criteria for O-O bond formation via metal-oxo complexes
    Betley, Theodore A.
    Wu, Qin
    Van Voorhis, Troy
    Nocera, Daniel G.
    [J]. INORGANIC CHEMISTRY, 2008, 47 (06) : 1849 - 1861
  • [7] Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy
    Chen, Jamie Y. C.
    Dang, Lianna
    Liang, Hanfeng
    Bi, Wenli
    Gerken, James B.
    Jin, Song
    Alp, E. Ercan
    Stahl, Shannon S.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) : 15090 - 15093
  • [8] Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
    Cheng, Tao
    Xiao, Hai
    Goddard, William A., III
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) : 1795 - 1800
  • [9] Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
    Cheng, Tao
    Xiao, Hai
    Goddard, William A., III
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) : 13802 - 13805
  • [10] Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
    Cococcioni, M
    de Gironcoli, S
    [J]. PHYSICAL REVIEW B, 2005, 71 (03):