Optimization of a Piezoelectric Fan using Fluid-Structure Interaction Simulation

被引:0
|
作者
Debrouwere, B. [1 ]
Degroote, J. [1 ]
Annerel, S. [1 ]
Vierendeels, J. [1 ]
机构
[1] Univ Ghent, Dept Flow Heat & Combust Mech, B-9000 Ghent, Belgium
来源
PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY | 2010年 / 94卷
关键词
piezofan; fluid-structure interaction; partitioned solution; IQN-ILS; optimization; heat fins;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the heat transfer from a single heat fin to the air flow in the wake of a piezoelectric fan (piezofan) is optimised. Both the heat fin and the piezofan are positioned in a channel, which has a significant influence on the flow field. The design variable is the frequency of the voltage applied to the piezofan. The heat transfer for different excitation frequencies is calculated using unsteady fluid-structure interaction simulations. To obtain a modular simulation environment, the flow equations and the structural equations are solved separately. However, the equilibrium on the fluid-structure interface is not satisfied automatically in this partitioned approach. Therefore, the interface quasi-Newton technique with an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS) is used to perform coupling iterations between the flow solver and the structural solver in each time step. With the unsteady fluid-structure interaction model, a surrogate model is constructed. The optimization of the surrogate model yields a frequency close to the first eigenfrequency of the structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Analysis of shape optimization problems for unsteady fluid-structure interaction
    Haubner, Johannes
    Ulbrich, Michael
    Ulbrich, Stefan
    INVERSE PROBLEMS, 2020, 36 (03)
  • [32] Numerical Simulation and Experimental Modelling of Fluid-Structure Interaction in Veins
    Stembera, Vitezslav
    Chlup, Hynek
    Marsik, Frantisek
    INTERNATIONAL CONFERENCE OF THE CZECH SOCIETY OF BIOMECHANICS - HUMAN BIOMECHANICS 2010, 2010, : 317 - 322
  • [33] Topology optimization of frequency responses of fluid-structure interaction systems
    Vicente, W. M.
    Picelli, R.
    Pavanello, R.
    Xie, Y. M.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2015, 98 : 1 - 13
  • [34] Fluid-structure interaction simulation of the flutter phenomenon in electromagnetic valve
    Liu, Jun
    Xu, Chunguang
    Zhang, Fan
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2014, 35 (07): : 1922 - 1930
  • [35] Fluid-structure interaction simulation of calcified aortic valve stenosis
    Cai, Li
    Hao, Yu
    Ma, Pengfei
    Zhu, Guangyu
    Luo, Xiaoyu
    Gao, Hao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (12) : 13172 - 13192
  • [36] Fluid-Structure Interaction Simulation of Parachute in Low Speed Airdrop
    Gao Xing-long
    Zhang Qing-bin
    Tang Qian-gang
    Yang Tao
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL III, 2013, : 1923 - 1928
  • [37] A decoupling algorithm for fluid-structure interaction problems based on optimization
    Kuberry, Paul
    Lee, Hyesuk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 267 : 594 - 605
  • [38] Backtracking Search Optimization Algorithm for fluid-structure interaction problems
    El Maani, Rabii
    Zeine, Ahmed Tchvagha
    Radi, Bouchaib
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 690 - 695
  • [39] Numerical simulation of fluid-structure interaction of a moving flexible foil
    Shin, Sangmook
    Kim, Hyoung Tae
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2008, 22 (12) : 2542 - 2553
  • [40] Fluid-structure interaction simulation of dynamic properties of electromagnetic valve
    Liu, Jun
    Xu, Chun-Guang
    Zhang, Fan
    Tuijin Jishu/Journal of Propulsion Technology, 2015, 36 (07): : 968 - 975