10-tough chordal graphs are Hamiltonian

被引:13
作者
Kabela, Adam [1 ,2 ]
Kaiser, Tomas [2 ,3 ]
机构
[1] Univ West Bohemia, Dept Math, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ West Bohemia, Dept Math, Inst Theoret Comp Sci CE ITI, Plzen, Czech Republic
关键词
Toughness; Hamilton cycle; Chordal graph; Hamilton-connected graph; TOUGHNESS;
D O I
10.1016/j.jctb.2016.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chen et al. (1998) proved that every 18-tough chordal graph has a Hamilton cycle. Improving upon their bound, we show that every 10-tough chordal graph is Hamiltonian (in fact, Hamilton-connected). We use Aharoni and Haxell's hypergraph extension of Hall's Theorem as our main tool. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 11 条
[1]  
Aharoni R, 2000, J GRAPH THEOR, V35, P83, DOI 10.1002/1097-0118(200010)35:2<83::AID-JGT2>3.0.CO
[2]  
2-V
[3]   Toughness in graphs - A survey [J].
Bauer, D ;
Broersma, H ;
Schmeichel, E .
GRAPHS AND COMBINATORICS, 2006, 22 (01) :1-35
[4]   Not every 2-tough graph is Hamiltonian [J].
Bauer, D ;
Broersma, HJ ;
Veldman, HJ .
DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) :317-321
[5]  
Böhme T, 1999, J GRAPH THEOR, V32, P405
[6]  
Chen GT, 1998, NETWORKS, V31, P29, DOI 10.1002/(SICI)1097-0037(199801)31:1<29::AID-NET4>3.0.CO
[7]  
2-M
[8]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[9]  
Gavril F., 1974, Journal of Combinatorial Theory, Series B, V16, P47, DOI 10.1016/0095-8956(74)90094-X
[10]   FINDING HAMILTONIAN CIRCUITS IN INTERVAL-GRAPHS [J].
KEIL, JM .
INFORMATION PROCESSING LETTERS, 1985, 20 (04) :201-206