FINITE ELEMENT METHOD FOR SOLVING THE COLLECTIVE NUCLEAR MODEL WITH TETRAHEDRAL SYMMETRY

被引:5
|
作者
Gusev, A. A. [1 ]
Vinitsky, S. I. [1 ,2 ]
Chuluunbaatar, O. [1 ,3 ]
Gozdz, A. [4 ]
Dobrowolski, A. [4 ]
Mazurek, K. [5 ]
Krassovitskiy, P. M. [1 ,6 ]
机构
[1] Joint Inst Nucl Res, Dubna, Russia
[2] RUDN Univ, 6 Miklukho Maklaya St, Moscow 117198, Russia
[3] Natl Univ Mongolia, Inst Math, Ulaanbaatar, Mongolia
[4] Marie Curie Sklodowska Univ, Inst Phys, Lublin, Poland
[5] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland
[6] Inst Nucl Phys, Alma Ata, Kazakhstan
关键词
Calculation scheme - Elliptic boundary value problem - Finite element grid - Lagrange polynomials - Nuclear model - Quadrupoles - Shape functions - Tetrahedral symmetry;
D O I
10.5506/APhysPolBSupp.12.589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a new calculation scheme of a finite element method (FEM) for solving an elliptic boundary-value problem describing a quadrupole vibration collective nuclear model with tetrahedral symmetry. We use shape functions constructed with interpolation Lagrange polynomials on a triangle finite element grid and compare the FEM results with those obtained earlier by a finite difference method.
引用
收藏
页码:589 / 594
页数:6
相关论文
共 50 条
  • [1] Nuclear tetrahedral symmetry and collective rotation
    Dudek, J.
    Gozdz, A.
    Curien, D.
    Pangon, V.
    Schunck, N.
    ACTA PHYSICA POLONICA B, 2007, 38 (04): : 1389 - 1404
  • [2] Solving the stochastic growth model with a finite element method
    McGrattan, ER
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1996, 20 (1-3): : 19 - 42
  • [3] Nuclear tetrahedral symmetry
    Schunck, N
    Dudek, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2004, 13 (01) : 213 - 216
  • [4] TETRAHEDRAL SYMMETRY IN NUCLEI: NEW PREDICTIONS BASED ON THE COLLECTIVE MODEL
    Dobrowolski, A.
    Gozdz, A.
    Mazurek, K.
    Dudek, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2011, 20 (02) : 500 - 506
  • [5] An iterative method for solving finite element model updating problems
    Yuan, Yongxin
    Liu, Hao
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (02) : 848 - 858
  • [6] Collective rotation of nuclei with tetrahedral symmetry
    Schunck, N
    Dudek, J
    Frauendorf, S
    ACTA PHYSICA POLONICA B, 2005, 36 (04): : 1071 - 1075
  • [7] A Large-Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method
    Schneider, Teseo
    Hu, Yixin
    Gao, Xifeng
    Dumas, Jeremie
    Zorin, Denis
    Panozzo, Daniele
    ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (03):
  • [8] Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
    A. A. Gusev
    G. Chuluunbaatar
    S. I. Vinitsky
    G. S. Pogosyan
    A. Deveikis
    P. O. Hess
    L. L. Hai
    Physics of Particles and Nuclei, 2023, 54 : 1011 - 1017
  • [9] Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
    Gusev, A. A.
    Chuluunbaatar, G.
    Vinitsky, S. I.
    Pogosyan, G. S.
    Deveikis, A.
    Hess, P. O.
    Hai, L. L.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (06) : 1011 - 1017
  • [10] Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method
    Xiang, Jiansheng
    Munjiza, Antonio
    Latham, John-Paul
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (08) : 946 - 978