Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells

被引:33
作者
Ngamsantivongsa, Phimraphas [1 ]
Lin, Hsiu-Li [1 ,2 ]
Yu, T. Leon [1 ,2 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[2] Yuan Ze Univ, Fuel Cell Ctr, Taoyuan 32003, Taiwan
关键词
Polybenzimidazole; Ethyl phosphoric acid-grafted polybenzimidazole; Epoxide-crosslinked membrane; High-temperature proton exchange membrane fuel cell; POLYMER ELECTROLYTE MEMBRANES; SULFONATED POLYBENZIMIDAZOLE; COMPOSITE MEMBRANES; PBI; TRANSPORT;
D O I
10.1007/s10965-015-0911-3
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Our previous work illustrated that blending 10-30 wt.% of ethyl phosphoric acid-grafted PBI (PBI-EPA, 12 mol% degree of grafting) in the PBI membrane enhances the phosphoric acid doping level (PA(dop)) and proton conductivity sigma of the membrane. On the other hand, the mechanical properties were decreased, and the membrane was highly dissolved in an 85 wt.% H3PO4 aqueous solution, while the PBI-EPA concentration in the PBI/PBI-EPA blend membrane was greater than 50 wt.%. To improve the mechanical properties of the PBI/PBI-EPA blend membrane, crosslinked PBI/PBI-EPA membranes with a PBI-EPA concentration higher than 50 wt.% were prepared by blending epoxy resin as a crosslinker. These crosslinked blend membranes demonstrated greater PA(dop) and sigma and better fuel cell performance than the neat-PBI and epoxide-crosslinked PBI membranes.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 43 条
[11]   Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells [J].
Hasiotis, C ;
Qingfend, L ;
Deimede, V ;
Kallitsis, JK ;
Kontoyannis, CG ;
Bjerrum, NJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) :A513-A519
[12]   Fuel cell membrane materials by chemical grafting of aromatic main-chain polymers [J].
Jannasch, P .
FUEL CELLS, 2005, 5 (02) :248-260
[13]   Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications [J].
Jones, DJ ;
Rozière, J .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :41-58
[14]   Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells [J].
Kerres, J ;
Ullrich, A ;
Meier, F ;
Häring, T .
SOLID STATE IONICS, 1999, 125 (1-4) :243-249
[15]   Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology [J].
Kreuer, KD ;
Paddison, SJ ;
Spohr, E ;
Schuster, M .
CHEMICAL REVIEWS, 2004, 104 (10) :4637-4678
[16]   On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J].
Kreuer, KD .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :29-39
[17]   PBI-based composite membranes for polymer fuel cells [J].
Kurdakova, V. ;
Quartarone, E. ;
Mustarelli, P. ;
Magistris, A. ;
Caponetti, E. ;
Saladino, M. L. .
JOURNAL OF POWER SOURCES, 2010, 195 (23) :7765-7769
[18]   PBI-Based Polymer Membranes for High Temperature Fuel Cells - Preparation, Characterization and Fuel Cell Demonstration [J].
Li, Q. ;
He, R. ;
Jensen, J. O. ;
Bjerrum, N. J. .
FUEL CELLS, 2004, 4 (03) :147-159
[19]   Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes [J].
Li, Q. F. ;
Rudbeck, H. C. ;
Chromik, A. ;
Jensen, J. O. ;
Pan, C. ;
Steenberg, T. ;
Calverley, M. ;
Bjerrum, N. J. ;
Kerres, J. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 347 (1-2) :260-270
[20]   High temperature proton exchange membranes based on polybenzimidazoles for fuel cells [J].
Li, Qingfeng ;
Jensen, Jens Oluf ;
Savinell, Robert F. ;
Bjerrum, Niels J. .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (05) :449-477