Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae

被引:156
作者
Salmon', TB
Evert, BA
Song, BW
Doetsch, PW [1 ]
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Grad Program Genet & Mol Biol, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Div Canc Biol, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Dept Radiat Oncol, Atlanta, GA 30322 USA
关键词
D O I
10.1093/nar/gkh696
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS), generated by endogenous and exogenous sources, cause significant damage to macromolecules, including DNA. To determine the cellular effects of induced, oxidative DNA damage, we established a relationship between specif ic oxidative DNA damage levels and biological consequences produced by acute H2O2 exposures in yeast strains defective in one or two DNA damage-handling pathways. We observed that unrepaired, spontaneous DNA damage interferes with the normal cellular response to exogenous oxidative stress. In addition, when base excision repair (BER) is compromised, there is a preference for using recombination (REC) over translesion synthesis (TLS) for handling H2O2-induced DNA damage. The global genome transcriptional response of these strains to exogenous H2O2 exposure allowed for the identification of genes responding specifically to induced, oxidative DNA damage. We also found that the presence of DNA damage alone was sufficient to cause an increase in intracellular ROS levels. These results, linking DNA damage and intracellular ROS production, may provide insight into the role of DNA damage in tumor progression and aging. To our knowledge, this is the first report establishing a relationship between H2O2-induced biological endpoints and specific oxidative DNA damage levels present in the genome.
引用
收藏
页码:3712 / 3723
页数:12
相关论文
共 44 条
[1]  
Alseth I, 1999, MOL CELL BIOL, V19, P3779
[2]   DNA-REPAIR IN AN ACTIVE GENE - REMOVAL OF PYRIMIDINE DIMERS FROM THE DHFR GENE OF CHO CELLS IS MUCH MORE EFFICIENT THAN IN THE GENOME OVERALL [J].
BOHR, VA ;
SMITH, CA ;
OKUMOTO, DS ;
HANAWALT, PC .
CELL, 1985, 40 (02) :359-369
[3]  
Bohr VA, 1988, DNA REPAIR LABORATOR, V3, P347
[4]   The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells [J].
Brooks, PJ ;
Wise, DS ;
Berry, DA ;
Kosmoski, JV ;
Smerdon, MJ ;
Somers, RL ;
Mackie, H ;
Spoonde, AY ;
Ackerman, EJ ;
Coleman, K ;
Tarone, RE ;
Robbins, JH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22355-22362
[5]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[6]   Oxidative DNA damage: mechanisms, mutation, and disease [J].
Cooke, MS ;
Evans, MD ;
Dizdaroglu, M ;
Lunec, J .
FASEB JOURNAL, 2003, 17 (10) :1195-1214
[7]  
Costa Vitor, 2001, Molecular Aspects of Medicine, V22, P217, DOI 10.1016/S0098-2997(01)00012-7
[8]   The nonmutagenic repair of broken replication forks via recombination [J].
Cox, MM .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2002, 510 (1-2) :107-120
[9]   Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S-cerevisiae [J].
Del Carratore, R ;
Della Croce, C ;
Simili, M ;
Taccini, E ;
Scavuzzo, M ;
Sbrana, S .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2002, 513 (1-2) :183-191
[10]  
Doetsch PW, 2001, PROG NUCLEIC ACID RE, V68, P29