A Shifted-Inverse Adaptive Multigrid Method for the Elastic Eigenvalue Problem

被引:17
作者
Gong, Bo [1 ]
Han, Jiayu [2 ]
Sun, Jiguang [3 ]
Zhang, Zhimin [1 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
[3] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[4] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Elastic eigenvalue problem; shifted-inverse iteration; adaptive multigrid method; FINITE-ELEMENT-METHOD; A-POSTERIORI; APPROXIMATION; DISCRETIZATIONS; SCHEME;
D O I
10.4208/cicp.OA-2018-0293
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A shifted-inverse iteration is proposed for the finite element discretization of the elastic eigenvalue problem. The method integrates the multigrid scheme and adaptive algorithm to achieve high efficiency and accuracy. Error estimates and optimal convergence for the proposed method are proved. Numerical examples show that the proposed method inherits the advantages of both ingredients and can compute low regularity eigenfunctions effectively.
引用
收藏
页码:251 / 273
页数:23
相关论文
共 26 条
[1]  
Babu\vska I., 1991, HDB NUMERICAL ANAL, VII
[2]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[3]  
Brenner S., 2007, MATH THEORY FINITE E, V15
[4]  
CHATELIN F., 1983, SPECTRAL APPROXIMATI
[5]  
Ciarlet P. G., 1991, Finite Element Methods, VII, P17
[6]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[7]   Convergence and optimal complexity of adaptive finite element eigenvalue computations [J].
Dai, Xiaoying ;
Xu, Jinchao ;
Zhou, Aihui .
NUMERISCHE MATHEMATIK, 2008, 110 (03) :313-355
[8]   Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues [J].
Dai, Xiaoying ;
He, Lianhua ;
Zhou, Aihui .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) :1934-1977
[9]   Eigenvalue approximation by mixed non-conforming finite element methods The determination of the vibrational modes of a linear elastic solid [J].
Dello Russo, Anahi .
CALCOLO, 2014, 51 (04) :563-597
[10]  
Dominguez S., REVISITING JON UNPUB