Universal Finite-Size Scaling around Topological Quantum Phase Transitions

被引:18
作者
Gulden, Tobias [1 ]
Janas, Michael [1 ]
Wang, Yuting [1 ]
Kamenev, Alex [1 ,2 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
关键词
INSULATORS; SOLITONS;
D O I
10.1103/PhysRevLett.116.026402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical point of a topological phase transition is described by a conformal field theory, where finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling away from criticality and find a scaling function, which discriminates between phases with different topological indices. This function appears to be universal for all five Altland-Zirnbauer symmetry classes with nontrivial topology in one spatial dimension. We obtain an analytic form of the scaling function and compare it with numerical results.
引用
收藏
页数:5
相关论文
共 25 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[3]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[4]   CONFORMAL-INVARIANCE, THE CENTRAL CHARGE, AND UNIVERSAL FINITE-SIZE AMPLITUDES AT CRITICALITY [J].
BLOTE, HWJ ;
CARDY, JL ;
NIGHTINGALE, MP .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :742-745
[5]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]  
D'Ariano G. M., 1985, SERIES ADV STAT MECH, V1
[7]  
Das A, 2012, NAT PHYS, V8, P887, DOI [10.1038/nphys2479, 10.1038/NPHYS2479]
[8]  
Di Francesco P., 1997, GRADUATE TEXTS CONT, DOI DOI 10.1007/978-1-4612-2256-9
[9]  
Gulden T., UNPUB
[10]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067