Data-Driven Phenotypic Categorization for Neurobiological Analyses: Beyond DSM-5 Labels

被引:57
作者
Van Dam, Nicholas T. [1 ,5 ]
O'Connor, David [1 ,5 ]
Marcelle, Enitan T. [1 ,8 ]
Ho, Erica J. [1 ]
Craddock, R. Cameron [1 ,5 ]
Tobe, Russell H. [5 ]
Gabbay, Vilma [2 ,3 ]
Hudziak, James J. [7 ]
Castellanos, F. Xavier [4 ,5 ]
Leventhal, Bennett L. [5 ,6 ]
Milham, Michael P. [1 ,5 ]
机构
[1] Ctr Developing Brain, Child Mind Inst, 445 Pk Ave, New York, NY 10022 USA
[2] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY USA
[3] Icahn Sch Med, Dept Neurosci, New York, NY USA
[4] NYU Langone Med Ctr, Child Study Ctr, New York, NY USA
[5] Ctr Biomed Imaging & Neuromodulat, Nathan Kline Inst, Orangeburg, NY USA
[6] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[7] Univ Vermont, Dept Psychiat, Burlington, VT USA
[8] Univ Calif Berkeley, Dept Psychol, Berkeley, CA USA
关键词
Hierarchical clustering; Multivariate distance matrix regression; Phenotypes; Psychopathology; RDoC; Resting state fMRI; DOMAIN CRITERIA RDOC; FUNCTIONAL CONNECTIVITY; DISCOVERY SCIENCE; MISSING DATA; PSYCHIATRY; DIAGNOSIS; DISORDER; HETEROGENEITY; REGISTRATION; MECHANISMS;
D O I
10.1016/j.biopsych.2016.06.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BACKGROUND: Data-driven approaches can capture behavioral and biological variation currently unaccounted for by contemporary diagnostic categories, thereby enhancing the ability of neurobiological studies to characterize brain- behavior relationships. METHODS: A community-ascertained sample of individuals (N = 347, 18-59 years of age) completed a battery of behavioral measures, psychiatric assessment, and resting-state functional magnetic resonance imaging in a cross-sectional design. Bootstrap- based exploratory factor analysis was applied to 49 phenotypic subscales from 10 measures. Hybrid hierarchical clustering was applied to resultant factor scores to identify nested groups. Adjacent groups were compared via independent samples t tests and chi- square tests of factor scores, syndrome scores, and psychiatric prevalence. Multivariate distance matrix regression examined functional connectome differences between adjacent groups. RESULTS: Reduction yielded six factors, which explained 77.8% and 65.4% of the variance in exploratory and constrained exploratory models, respectively. Hybrid hierarchical clustering of these six factors identified two, four, and eight nested groups (i.e., phenotypic communities). At the highest clustering level, the algorithm differentiated functionally adaptive and maladaptive groups. At the middle clustering level, groups were separated by problem type (maladaptive groups; internalizing vs. externalizing problems) and behavioral type(adaptive groups; sensationseeking vs. extraverted/emotionally stable). Unique phenotypic profiles were also evident at the lowest clustering level. Group comparisons exhibited significant differences in intrinsic functional connectivity at the highest clustering level in somatomotor, thalamic, basal ganglia, and limbic networks. CONCLUSIONS: Data-driven approaches for identifying homogenous subgroups, spanning typical function to dysfunction, not only yielded clinically meaningful groups, but also captured behavioral and neurobiological variation among healthy individuals.
引用
收藏
页码:484 / 494
页数:11
相关论文
共 62 条
[1]  
Achenbach T. M., 2003, Manual for the ASEBA Adult forms & profiles: For ages 18-59: Adult Self-Report, adult behavior checklist
[2]   Challenges and Opportunities in Mining Neuroscience Data [J].
Akil, Huda ;
Martone, Maryann E. ;
Van Essen, David C. .
SCIENCE, 2011, 331 (6018) :708-712
[3]   Functional-Anatomic Fractionation of the Brain's Default Network [J].
Andrews-Hanna, Jessica R. ;
Reidler, Jay S. ;
Sepulcre, Jorge ;
Poulin, Renee ;
Buckner, Randy L. .
NEURON, 2010, 65 (04) :550-562
[4]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[5]   Interoceptive predictions in the brain [J].
Barrett, Lisa Feldman ;
Simmons, W. Kyle .
NATURE REVIEWS NEUROSCIENCE, 2015, 16 (07) :419-429
[6]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[7]   Personality traits and vulnerability or resilience to substance use disorders [J].
Belcher, Annabelle M. ;
Volkow, Nora D. ;
Moeller, F. Gerard ;
Ferre, Sergi .
TRENDS IN COGNITIVE SCIENCES, 2014, 18 (04) :211-217
[8]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[9]   Multisensory brain mechanisms of bodily self-consciousness [J].
Blanke, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (08) :556-571
[10]   Conscientiousness and health-related behaviors: A meta-analysis of the leading behavioral contributors to mortality [J].
Bogg, T ;
Roberts, BW .
PSYCHOLOGICAL BULLETIN, 2004, 130 (06) :887-919