Some optimal pointwise ergodic theorems with rate

被引:6
作者
Cuny, Christophe [1 ]
机构
[1] Univ Nouvelle Caledonie, Equipe ERIM, Noumea 98800, New Caledonia
关键词
D O I
10.1016/j.crma.2009.04.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a Dunford-Schwartz operator on the probability space (X, Sigma, mu) and p > 1. For f in the range of suitable operators of L(p)(X, Sigma, mu), we obtain pointwise ergodic theorems with rate, using a method of Derriennic and Lin (2001). When T is induced by a it-preserving transformation, these results are shown to be optimal. The proof of the optimality is inspired from a construction of Daniel (1989). To cite this article: C. Cuny, C. R. Acad Sci. Paris, Ser. I 347 (2009). (c) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:953 / 958
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1983, Cambridge Studies in Advanced Mathematics
[2]   Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory [J].
Cohen, G ;
Lin, M .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) :41-86
[3]  
CUNY C, POINTWISE ERGODIC TH
[4]  
CUNY C, ERGODIC THE IN PRESS
[5]  
DENIEL Y, 1989, J THEORET PROB, V2, P475
[6]   Fractional Poisson equations and ergodic theorems for fractional coboundaries [J].
Derriennic, Y ;
Lin, M .
ISRAEL JOURNAL OF MATHEMATICS, 2001, 123 (1) :93-130
[7]  
Gaposhkin V F, 1981, TEOR VEROYA PRIMEN, V26, P720
[8]  
Krengel U., 1985, ERGODIC THEOREMS, V6, DOI [10.1515/9783110844641, DOI 10.1515/9783110844641]
[9]   Uniform bounds under increment conditions [J].
Weber, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) :911-936
[10]   Law of the iterated logarithm for stationary processes [J].
Zhao, Ou ;
Woodroofe, Michael .
ANNALS OF PROBABILITY, 2008, 36 (01) :127-142