Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage

被引:507
作者
Tan, Xiao-fei [1 ,2 ]
Liu, Shao-bo [3 ,4 ]
Liu, Yun-guo [1 ,2 ]
Gu, Yan-ling [1 ,2 ]
Zeng, Guang-ming [1 ,2 ]
Hua, Xin-jiang [1 ,2 ,5 ]
Wang, Xin [6 ]
Liu, Shao-heng [1 ,2 ]
Jiang, Lu-hua [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China
[3] Cent S Univ, Sch Architecture & Art, Changsha 410082, Hunan, Peoples R China
[4] Cent S Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[5] Cent South Univ Forestry & Technol, Coll Environm Sci & Engn Res, Changsha 410004, Hunan, Peoples R China
[6] Hunan Normal Univ, Coll Resources & Environm Sci, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar Activated carbon; Water pollution treatment; CO2; capture; Energy storage; PERSONAL CARE PRODUCTS; METHYLENE-BLUE; AQUEOUS-SOLUTIONS; FAST-PYROLYSIS; HYDROTHERMAL CARBONIZATION; CHEMICAL ACTIVATION; CURRENT KNOWLEDGE; STEAM ACTIVATION; COPPER REMOVAL; WOODY BIOCHAR;
D O I
10.1016/j.biortech.2016.12.083
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:359 / 372
页数:14
相关论文
共 99 条
[1]   Biochar as a sorbent for contaminant management in soil and water: A review [J].
Ahmad, Mahtab ;
Rajapaksha, Anushka Upamali ;
Lim, Jung Eun ;
Zhang, Ming ;
Bolan, Nanthi ;
Mohan, Dinesh ;
Vithanage, Meththika ;
Lee, Sang Soo ;
Ok, Yong Sik .
CHEMOSPHERE, 2014, 99 :19-33
[2]   Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater [J].
Ahmed, Mohammad Boshir ;
Zhou, John L. ;
Ngo, Huu H. ;
Guo, Wenshan ;
Chen, Mengfang .
BIORESOURCE TECHNOLOGY, 2016, 214 :836-851
[3]   Insight into biochar properties and its cost analysis [J].
Ahmed, Mohammad Boshir ;
Zhou, John L. ;
Ngo, Huu Hao ;
Guo, Wenshan .
BIOMASS & BIOENERGY, 2016, 84 :76-86
[4]   Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: Review [J].
Ahmed, Muthanna J. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2016, 4 (01) :89-99
[5]   A review: production of activated carbon from agricultural byproducts via conventional and microwave heating [J].
Alslaibi, Tamer M. ;
Abustan, Ismail ;
Ahmad, Mohd Azmier ;
Abu Foul, Ahmad .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (07) :1183-1190
[6]   Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff [J].
Angin, Dilek ;
Kose, T. Ennil ;
Selengil, Ugur .
APPLIED SURFACE SCIENCE, 2013, 280 :705-710
[7]   Biochar as a precursor of activated carbon [J].
Azargohar, R. ;
Dalai, A. K. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 131 (1-3) :762-773
[8]   Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? [J].
Boxall, Alistair B. A. ;
Rudd, Murray A. ;
Brooks, Bryan W. ;
Caldwell, Daniel J. ;
Choi, Kyungho ;
Hickmann, Silke ;
Innes, Elizabeth ;
Ostapyk, Kim ;
Staveley, Jane P. ;
Verslycke, Tim ;
Ankley, Gerald T. ;
Beazley, Karen F. ;
Belanger, Scott E. ;
Berninger, Jason P. ;
Carriquiriborde, Pedro ;
Coors, Anja ;
DeLeo, Paul C. ;
Dyer, Scott D. ;
Ericson, Jon F. ;
Gagne, Francois ;
Giesy, John P. ;
Gouin, Todd ;
Hallstrom, Lars ;
Karlsson, Maja V. ;
Larsson, D. G. Joakim ;
Lazorchak, James M. ;
Mastrocco, Frank ;
McLaughlin, Alison ;
McMaster, Mark E. ;
Meyerhoff, Roger D. ;
Moore, Roberta ;
Parrott, Joanne L. ;
Snape, Jason R. ;
Murray-Smith, Richard ;
Servos, Mark R. ;
Sibley, Paul K. ;
Straub, Juerg Oliver ;
Szabo, Nora D. ;
Topp, Edward ;
Tetreault, Gerald R. ;
Trudeau, Vance L. ;
Van Der Kraak, Glen .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2012, 120 (09) :1221-1229
[9]   Benzene removal over a fixed bed of wood char: The effect of pyrolysis temperature and activation with CO2 on the char reactivity [J].
Burhenne, Luisa ;
Aicher, Thomas .
FUEL PROCESSING TECHNOLOGY, 2014, 127 :140-148
[10]   The effect of the carbonization/activation procedure on the microporous texture of the subsequent chars and active carbons [J].
Cagnon, B ;
Py, X ;
Guillot, A ;
Stoeckli, F .
MICROPOROUS AND MESOPOROUS MATERIALS, 2003, 57 (03) :273-282