Travelling waves for the Gross-Pitaevskii equation in dimension larger than two

被引:36
作者
Chiron, D [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis LIONS, F-75252 Paris, France
关键词
travelling wave; nonlinear Schrodinger equation; vortex ring; Ginzburg-Landau functional;
D O I
10.1016/j.na.2003.10.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a different approach than the one given in Bethuel et al.(J. Eur. Math. Soc. 6(1) (2004) 17) of the existence of travelling vortex rings solutions to the Gross-Pitaevskii equation in dimension N greater than or equal to 3. We follow an idea, which was used before in Bethuel and Saut (Ann. IHP Phys. Theor. 70(2) (1999) 147) in dimension 2,, invoking the mountain-pass lemma. It has the advantage of providing a full interval of propagation speeds (0, C-0). (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 204
页数:30
相关论文
共 7 条
[1]  
ALBERTI G, 2004, IN PRESS INDIANA U M
[2]   OPTIMAL ISOPERIMETRIC-INEQUALITIES [J].
ALMGREN, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (03) :451-547
[3]  
[Anonymous], GINZBURG LANDAU VORT
[4]  
Bethuel F, 2004, J EUR MATH SOC, V6, P17
[5]  
Bethuel F, 1999, ANN I H POINCARE-PHY, V70, P147
[6]  
Federer H., 1969, GEOMETRIC MEASURE TH
[7]   The Jacobian and the Ginzburg-Landau energy [J].
Jerrard, RL ;
Soner, HM .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (02) :151-191