Adaptive neuro-fuzzy backstepping dynamic surface control for uncertain fractional-order nonlinear systems

被引:35
作者
Song, Shuai [1 ]
Zhang, Baoyong [1 ]
Song, Xiaona [2 ]
Zhang, Zhengqiang [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[2] Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 467023, Peoples R China
[3] Qufu Normal Univ, Sch Elect Engn & Automat, Rizhao 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
Backstepping control; Dynamic surface control; Fractional-order nonlinear systems; Neuro-fuzzy network system; SLIDING MODE CONTROL; TRACKING CONTROL; TIME-DELAY;
D O I
10.1016/j.neucom.2019.06.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a fractional-order back stepping dynamic surface control (DSC) method is developed to cope with the stabilization problem for fractional-order nonlinear systems with uncertainties and external disturbances. In each step, a neuro-fuzzy network system is employed to approximate the unknown nonlinear function existing in fractional-order subsystem. Furthermore, a modified fractional-order filter is designed to avoid the problem of explosion of complexity caused by the recursive procedure. Then based on the fractional-order Lyapunov stability theory, the corresponding adaptive back stepping DSC controller is proposed to guarantee the stability of the fractional-order closed-loop systems. Finally, three examples are given in simulation part to demonstrate the validity of the proposed control method. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:172 / 184
页数:13
相关论文
共 51 条
[1]   Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy [J].
Aghababa, Mohammad Pourmahmood .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (05) :1875-1880
[2]  
[Anonymous], 2016, NONLINEAR DYNAM
[3]   Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems [J].
Bigdeli, Nooshin ;
Ziazi, Hossein Alinia .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01) :160-183
[4]   Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances [J].
Chen, Lin ;
Wang, Yan-Wu ;
Yang, Wu ;
Xiao, Jiang-Wen .
NEUROCOMPUTING, 2018, 303 :11-19
[5]   Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems [J].
Chen, Mou ;
Shao, Shu-Yi ;
Shi, Peng ;
Shi, Yan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (04) :417-421
[6]   Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO [J].
Chen, Mou ;
Zhou, Yanlong ;
Guo, William W. .
NEUROCOMPUTING, 2014, 144 :436-447
[7]   Output feedback NN tracking control for fractional-order nonlinear systems with time-delay and input quantization [J].
Hua, Changchun ;
Ning, Jinghua ;
Zhao, Guanglei ;
Li, Yafeng .
NEUROCOMPUTING, 2018, 290 :229-237
[8]   Decentralized event-triggered control for interconnected time-delay stochastic nonlinear systems using neural networks [J].
Hua, Changchun ;
Li, Kuo ;
Guan, Xinping .
NEUROCOMPUTING, 2018, 272 :270-278
[9]   Chaos and hyperchaos in fractional-order cellular neural networks [J].
Huang, Xia ;
Zhao, Zhao ;
Wang, Zhen ;
Li, Yuxia .
NEUROCOMPUTING, 2012, 94 :13-21
[10]   Mittag-Leffler stability of fractional order nonlinear dynamic systems [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
AUTOMATICA, 2009, 45 (08) :1965-1969