Risk Stratification for Hospital Readmission of Heart Failure Patients: A Machine Learning Approach

被引:5
作者
Hon, Chun Pan [1 ]
Pereira, Mayana [1 ]
Sushmita, Shanu [1 ]
Teredesai, Ankur [1 ]
De Cock, Martine [1 ]
机构
[1] Univ Washington, Inst Technol, Ctr Data Sci, Tacoma, WA 98402 USA
来源
PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS | 2016年
关键词
D O I
10.1145/2975167.2985648
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Being able to stratify patients according to 30-day hospital readmission risk, anticipated length and cost of stay can guide clinicians in discharge planning and intervention recommendation, leading to an increase of quality of care, and a decrease of healthcare cost. We present a comparative performance analysis of decision trees, boosted decision trees and logistic regression models that can flag, at the time of discharge, patients with an anticipated early, lengthy and expensive readmission. We validate our models using discharge records of 500K congestive heart failure patients from California-licensed hospitals.
引用
收藏
页码:491 / 492
页数:2
相关论文
共 50 条
  • [41] Patients with cardiac amyloidosis are at a greater risk of mortality and hospital readmission after acute heart failure
    Berthelot, Emmanuelle
    Broussier, Amaury
    Hittinger, Luc
    Donadio, Cristiano
    Rovani, Xavier
    Salengro, Emmanuel
    Megbemado, Richard
    Godreuil, Christian
    Belmin, Joel
    David, Jean Philippe
    Genet, Bastien
    Damy, Thibaud
    ESC HEART FAILURE, 2023, 10 (03): : 2042 - 2050
  • [42] MRI radiomics: A machine learning approach for the risk stratification of endometrial cancer patients
    Mainenti, Pier Paolo
    Stanzione, Arnaldo
    Cuocolo, Renato
    Del Grosso, Renata
    Danzi, Roberta
    Romeo, Valeria
    Raffone, Antonio
    Sardo, Attilio Di Spiezio
    Giordano, Elena
    Travaglino, Antonio
    Insabato, Luigi
    Scaglione, Mariano
    Maurea, Simone
    Brunetti, Arturo
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 149
  • [43] Socioeconomic status as an independent risk factor for hospital readmission for heart failure
    Philbin, EF
    Dec, GW
    Jenkins, PL
    DiSalvo, TG
    AMERICAN JOURNAL OF CARDIOLOGY, 2001, 87 (12) : 1367 - 1371
  • [44] PREDICTION OF MORTALITY AND HOSPITAL READMISSION FOR HEART FAILURE: A SIMPLIFIED RISK SCORE
    Sadek, R.
    Lee, C. S.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2019, 67 (01) : 69 - 69
  • [45] A Machine Learning Approach to Simplify Risk Stratification of Patients with Atherosclerotic Cardiovascular Disease
    Li, Hsin Fang
    Nute, Andrew
    Weerasinghe, Roshanthi
    Wendt, Staci
    Wilson, Eleni
    Sidelnikov, Eduard
    Kathe, Niranjan
    Swihart, Charissa
    Jones, Laney
    Gluckman, Ty
    CIRCULATION, 2024, 150
  • [46] Length of hospital stay in acute heart failure and risk of early readmission
    Bosch Campos, M. J.
    Paya, A.
    Cardells, I.
    Escribano, D.
    Santas, E.
    Minana, G.
    Molla, A.
    Sanchis, J.
    Chorro, F. J.
    Nunez, J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2016, 18 : 120 - 120
  • [47] Novel Data Domains and Machine Learning Modestly Improved Performance of Risk Calculators for Heart Failure Readmission
    Savitz, S.
    Leong, T.
    Sung, S. H.
    Lee, K.
    Rana, J.
    Tabada, G.
    Go, A.
    HEALTH SERVICES RESEARCH, 2020, 55 : 85 - 85
  • [48] PUTTING VETERANS FIRST FAILURE INTERVENTION RISK STRATIFICATION TOOL TO REDUCE 30 DAY READMISSION FOR PATIENTS WITH CONGESTIVE HEART FAILURE
    Ogunwole, Serena M.
    Phillips, Jason
    Wathen, Patricia
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2017, 32 : S790 - S791
  • [49] Interpretable Machine Learning Identifies Risk Predictors in Patients With Heart Failure
    Zame, William
    Yoon, Jinsung
    Asselbergs, Folkert
    Van der Schaar, Michaela
    CIRCULATION, 2018, 138
  • [50] Machine learning to predict in-hospital outcomes in patients with acute heart failure
    Sibilia, B.
    Toupin, S.
    Dillinger, J. G.
    Brette, J. B.
    Ramonatxo, A.
    Schurtz, G.
    Hamzi, K.
    Trimaille, A.
    Bouali, N.
    Piliero, N.
    Logeart, D.
    Andrieu, S.
    Picard, F.
    Henry, P.
    Pezel, T.
    EUROPEAN HEART JOURNAL, 2023, 44