Laser-Induced Surface Modification of Contact Lenses

被引:2
作者
Alqurashi, Yousef [1 ]
Bajgrowicz-Cieslak, Magdalena [1 ]
Hassan, Muhammad Umair [1 ,2 ]
Yetisen, Ali K. [3 ,4 ]
Butt, Haider [1 ]
机构
[1] Univ Birmingham, Sch Engn, Birmingham B15 2TT, W Midlands, England
[2] COMSATS Inst Informat Technol, Ctr Micro & Nano Devices, Islamabad 44000, Pakistan
[3] Harvard Univ, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[4] MIT, Cambridge, MA 02139 USA
关键词
channels; contact angle; contact lenses; laser ablation; laser proccessing; microfluidics; OCULAR SURFACE; HYDROGEL; COMFORT; WEARERS;
D O I
10.1002/adem.201700963
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The authors report on the laser-induced modification of surface properties of contact lenses. Selective areas of the surface of commercial silicon-hydrogel contact lenses are patterned in array formats using different powers of the CO2 laser. 1D arrays of different groove densities, channels, and 2D intersecting architecture are fabricated. Contact angle measurements are carried out to measure the surface hydrophilicity, and extent of hydration is linked with the surface profile properties and the space gap between the fabricated patterns, which are controlled by the beam exposure time, beam power, and scan speed. Laser treatment of contact lenses results in improved hydration proportional to the density of laser ablated segments on the surface. The hydration time of water droplets on different lens surfaces is also recorded - all 2D patterned lenses show faster hydration as water quickly diffused into the bulk of the lens due to the extended interfacial area between the contact lens and the water droplet as a consequence of larger areal modification in 2D as compared with 1D patterns. The best wettability properties are obtained with 0.3mm space gap, 9W power, and 200mms(-1) scan speed. Optical microscopy is used to image the 3D surface profiles of the modified lenses and the depth of the patterns and is correlated with the experimental observations. The maximum depth of 40 mu m is observed with 0.3mm space gap, 9W, and 200mms(-1) scan speed. Optical transmittance of broadband white light is measured to assess the surface treatment effects on the contact lenses. A large exposure and dense patterning of contact lens result in decreased (down to a minimum of 45%) in the light transmittance, which dictates the practical usability of such patterning. Surface treatment of contact lenses can be utilized to deposit stable conducting connection for on-lens-LEDs, displays, and communication antennas as well as for stabilizing biosensing materials and drug dispensing applications.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Oxygen permeability of a new type of high Dk soft contact lens material [J].
Alvord, L ;
Court, J ;
Davis, T ;
Morgan, CF ;
Schindhelm, K ;
Vogt, J ;
Winterton, L .
OPTOMETRY AND VISION SCIENCE, 1998, 75 (01) :30-36
[2]  
[Anonymous], [No title captured], Patent No. 3808178
[3]  
[Anonymous], 2017, REPORT CONTACT LENSE
[4]   Contact Lens Comfort [J].
Caffery, Barbara ;
Dogru, Murat ;
Jones, Lyndon W. ;
Lin, Meng C. ;
Nichols, Jason J. ;
Papas, Eric ;
Pucker, Andrew ;
Pult, Heiko ;
Willcox, Mark D. P. .
OPTOMETRY AND VISION SCIENCE, 2016, 93 (08) :790-792
[5]   Non-invasive objective and contemporary methods for measuring ocular surface inflammation in soft contact lens wearers - A review [J].
Chao, Cecilia ;
Richdale, Kathryn ;
Jalbert, Isabelle ;
Doung, Kim ;
Gokhale, Moneisha .
CONTACT LENS & ANTERIOR EYE, 2017, 40 (05) :273-282
[6]  
Cook B. S., 2016, Packaged Device with Additive Substrate Surface Modification, Patent No. [US9524926 B2, 9524926]
[7]   Targeting contact lens induced dryness and discomfort: What properties will make lenses more comfortable [J].
Fonn, Desmond .
OPTOMETRY AND VISION SCIENCE, 2007, 84 (04) :279-285
[8]  
Giraldez M.J, 2012, OCULAR DIS, DOI [DOI 10.5772/48436, 10.5772/48436]
[9]   Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices [J].
Han, Soo ;
Ji, Seungmuk ;
Abdullah, Abdullah ;
Kim, Duckil ;
Lim, Hyuneui ;
Lee, Donghyun .
APPLIED SURFACE SCIENCE, 2018, 429 :244-252
[10]   Influence of different chemical surface patterns on the dynamic wetting behaviour on flat and silanized silicon wafers during inclining-plate measurements: An experimental investigation with the high-precision drop shape analysis approach [J].
Heib, F. ;
Munief, W. M. ;
Ingebrandt, S. ;
Hempelmann, R. ;
Schmitt, M. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 508 :274-285