From continuous time random walks to the fractional Fokker-Planck equation

被引:651
作者
Barkai, E
Metzler, R
Klafter, J
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1103/PhysRevE.61.132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize the continuous time random walk (CTRW) to include the effect of space dependent jump probabilities. When the mean waiting time diverges we derive a fractional Fokker-Planck equation (FFPE). This equation describes anomalous diffusion in an external force field and close to thermal equilibrium. We discuss the domain of validity of the fractional kinetic equation. For the force free case we compare between the CTRW solution and that of the FFPE.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 39 条
[1]  
[Anonymous], 1986, HDB STOCHASTIC METHO
[2]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[3]   Subdiffusion and anomalous local viscoelasticity in actin networks - Comment [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1134-1134
[4]   Crossover from dispersive to regular transport in biased maps [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2245-2248
[5]   Dissipation and fluctuation for a randomly kicked particle: Normal and anomalous diffusion [J].
Barkai, E ;
Fleurov, V .
CHEMICAL PHYSICS, 1996, 212 (01) :69-88
[6]   Generalized Einstein relation: A stochastic modeling approach [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1998, 58 (02) :1296-1310
[7]  
BARKAI E, IN PRESS PHYS REV E
[8]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[9]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[10]  
Doi M., 1986, The Theory of Polymer Dynamics