The category of toric stacks

被引:24
|
作者
Iwanari, Isamu [1 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Kyoto 6068502, Japan
关键词
toric geometry; logarithmic geometry; algebraic stacks; DELIGNE-MUMFORD STACKS; CURVES;
D O I
10.1112/S0010437X09003911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that there is an equivalence between the 2-category of smooth Deligne-Mumford stacks with torus embeddings and actions and the 1-category of stacky fans. To this end, we prove two main results. The first is related to a combinatorial aspect of the 2-category of toric algebraic stacks defined by I. Iwanari [Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Preprint (2007)]; we establish ail equivalence between the 2-category of toric algebraic stacks and the 1-category of stacky fans. The second result provides a geometric characterization of toric algebraic stacks. Logarithmic geometry in the sense of Fontaine-Illusie plays a central role in obtaining our results.
引用
收藏
页码:718 / 746
页数:29
相关论文
共 50 条
  • [1] TORIC STACKS II: INTRINSIC CHARACTERIZATION OF TORIC STACKS
    Geraschenko, Anton
    Satriano, Matthew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 1073 - 1094
  • [2] Toric symplectic stacks
    Hoffman, Benjamin
    ADVANCES IN MATHEMATICS, 2020, 368
  • [3] A mirror theorem for toric stacks
    Coates, Tom
    Corti, Alessio
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    COMPOSITIO MATHEMATICA, 2015, 151 (10) : 1878 - 1912
  • [4] On complex and symplectic toric stacks
    Hochenegger, Andreas
    Witt, Frederik
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 305 - +
  • [5] MOTIVIC INTEGRATION ON TORIC STACKS
    Stapledon, A.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) : 3943 - 3965
  • [6] On the Grothendieck Groups of Toric Stacks
    Hua, Zheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 665 - 670
  • [7] GLSMs for gerbes (and other toric stacks)
    Pantev, Tony
    Sharpe, Eric
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 10 (01) : 77 - 121
  • [8] Moduli stacks of stable toric quasimaps
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    ADVANCES IN MATHEMATICS, 2010, 225 (06) : 3022 - 3051
  • [9] Stringy invariants and toric Artin stacks
    Satriano, Matthew
    Usatine, Jeremy
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [10] Inertial Chow rings of toric stacks
    Coleman, Thomas
    Edidin, Dan
    MANUSCRIPTA MATHEMATICA, 2018, 156 (3-4) : 341 - 369