In this paper, we show that there is an equivalence between the 2-category of smooth Deligne-Mumford stacks with torus embeddings and actions and the 1-category of stacky fans. To this end, we prove two main results. The first is related to a combinatorial aspect of the 2-category of toric algebraic stacks defined by I. Iwanari [Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Preprint (2007)]; we establish ail equivalence between the 2-category of toric algebraic stacks and the 1-category of stacky fans. The second result provides a geometric characterization of toric algebraic stacks. Logarithmic geometry in the sense of Fontaine-Illusie plays a central role in obtaining our results.