Mean-field approach for diffusion of interacting particles

被引:11
作者
Suarez, G. [1 ]
Hoyuelos, M.
Martin, H.
机构
[1] Univ Nacl Mar del Plata, Fac Ciencias Exactas & Nat, CONICET, Inst Invest Fis Mar del Plata, RA-7600 Mar Del Plata, Buenos Aires, Argentina
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
关键词
SELF-DIFFUSION; FREE-ENERGY; THERMODYNAMICS; EQUATION;
D O I
10.1103/PhysRevE.92.062118
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A nonlinear Fokker-Planck equation is obtained in the continuous limit of a one-dimensional lattice with an energy landscape of wells and barriers. Interaction is possible among particles in the same energy well. A parameter., related to the barrier's heights, is introduced. Its value is determinant for the functional dependence of the mobility and diffusion coefficient on particle concentration, but has no influence on the equilibrium solution. A relation between the mean-field potential and the microscopic interaction energy is derived. The results are illustrated with classical particles with interactions that reproduce fermion and boson statistics.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Diffusion equation for interacting particles [J].
Aranovich, GL ;
Donohue, MD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :16062-16069
[2]   Generalized exclusion processes: Transport coefficients [J].
Arita, Chikashi ;
Krapivsky, P. L. ;
Mallick, Kirone .
PHYSICAL REVIEW E, 2014, 90 (05)
[3]   BROWNIAN DIFFUSION OF PARTICLES WITH HYDRODYNAMIC INTERACTION [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1976, 74 (MAR9) :1-29
[4]   Diffusion of Interacting Particles in Discrete Geometries [J].
Becker, T. ;
Nelissen, K. ;
Cleuren, B. ;
Partoens, B. ;
Van den Broeck, C. .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)
[5]   NON-LINEAR FLUCTUATION-DISSIPATION RELATIONS AND STOCHASTIC-MODELS IN NON-EQUILIBRIUM THERMODYNAMICS .1. GENERALIZED FLUCTUATION-DISSIPATION THEOREM [J].
BOCHKOV, GN ;
KUZOVLEV, YE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1981, 106 (03) :443-479
[6]   Excluded-volume effects in the diffusion of hard spheres [J].
Bruna, Maria ;
Chapman, S. Jonathan .
PHYSICAL REVIEW E, 2012, 85 (01)
[7]  
Chandler D., 1987, INTRO MODERN STATIST, P131
[8]   Liquid-vapor density profiles from equilibrium limit of diffusion equation for interacting particles [J].
Chen, Y. ;
Aranovich, G. L. ;
Donohue, M. D. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 307 (01) :34-39
[9]   SELF-DIFFUSION IN SUSPENSIONS OF INTERACTING BROWNIAN PARTICLES [J].
CICHOCKI, B ;
FELDERHOF, BU .
PHYSICAL REVIEW A, 1990, 42 (10) :6024-6031
[10]   Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation [J].
Curado, EMF ;
Nobre, FD .
PHYSICAL REVIEW E, 2003, 67 (02) :7-211077