Free energy and states of fractional-order hereditariness

被引:25
|
作者
Deseri, Luca [1 ,2 ,3 ]
Di Paola, Mario [4 ]
Zingales, Massimiliano [4 ,5 ]
机构
[1] Dipartimento Ingn Civile Ambientale & Meccan, I-38123 Trento, Italy
[2] Carnegie Mellon Univ, Dept Civil Environm Engn, Pittsburgh, PA 15213 USA
[3] Methodist Hosp, Res Inst, TMHRI, Dept Nanomed, Houston, TX 77030 USA
[4] Dipartimento Ingn Civile Ambientale Aerospaziale, I-90128 Palermo, Italy
[5] Mediterranean Ctr Human Hlth & Adv Biotechnol, Lab BionanoMech Med BNM2 LAB, I-90128 Palermo, Italy
基金
美国安德鲁·梅隆基金会;
关键词
Fractional derivatives; Power-law creep/relaxation; Free energy; Dissipation rate; Material state; HEAT-CONDUCTION; NONLOCAL MODEL; RELAXATION; CALCULUS;
D O I
10.1016/j.ijsolstr.2014.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3156 / 3167
页数:12
相关论文
共 50 条
  • [41] Fundamental solutions of the general fractional-order diffusion equations
    Yang, Xiao-Jun
    Gao, Feng
    Ju, Yang
    Zhou, Hong-Wei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9312 - 9320
  • [42] Identification using Fractional-order Model: An Application Overview
    Ishak, Norlela
    Yusof, Nuzaihan Mhd.
    Rahiman, Mohd. Hezri Fazalul
    Adnan, Ramli
    Tajudin, Mazidah
    2014 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM COMPUTING AND ENGINEERING, 2014, : 668 - 673
  • [43] Stability and stabilization of a class of fractional-order nonlinear systems for
    Huang, Sunhua
    Wang, Bin
    NONLINEAR DYNAMICS, 2017, 88 (02) : 973 - 984
  • [44] Wavelet Phase Synchronization of Fractional-Order Chaotic Systems
    Chen Feng
    Xia Lei
    Li Chun-Guang
    CHINESE PHYSICS LETTERS, 2012, 29 (07)
  • [45] Heat conduction modeling by using fractional-order derivatives
    Zecova, Monika
    Terpak, Jan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 365 - 373
  • [46] Fractional-order theory of heat transport in rigid bodies
    Zingales, Massimiliano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (11) : 3938 - 3953
  • [47] Study of a fractional-order model of chronic wasting disease
    Maji, Chandan
    Mukherjee, Debasis
    Kesh, Dipak
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4669 - 4682
  • [48] Optimal charging of fractional-order circuits with Cuckoo search
    AbdelAty, A. M.
    Fouda, Mohammed E.
    Elbarawy, Menna T. M. M.
    Radwan, A. G.
    JOURNAL OF ADVANCED RESEARCH, 2021, 32 : 119 - 131
  • [49] A Fractional-Order Generalized Thermoelastic Problem of a Bilayer Piezoelectric Plate for Vibration Control
    Xu, Yeshou
    Xu, Zhao-Dong
    He, Tianhu
    Chen, Jinxiang
    Xu, Chao
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [50] Multistability analysis of a conformable fractional-order chaotic system
    Ma, Chenguang
    Jun, Mou
    Cao, Yinghong
    Liu, Tianming
    Wang, Jieyang
    PHYSICA SCRIPTA, 2020, 95 (07)