Free energy and states of fractional-order hereditariness

被引:25
|
作者
Deseri, Luca [1 ,2 ,3 ]
Di Paola, Mario [4 ]
Zingales, Massimiliano [4 ,5 ]
机构
[1] Dipartimento Ingn Civile Ambientale & Meccan, I-38123 Trento, Italy
[2] Carnegie Mellon Univ, Dept Civil Environm Engn, Pittsburgh, PA 15213 USA
[3] Methodist Hosp, Res Inst, TMHRI, Dept Nanomed, Houston, TX 77030 USA
[4] Dipartimento Ingn Civile Ambientale Aerospaziale, I-90128 Palermo, Italy
[5] Mediterranean Ctr Human Hlth & Adv Biotechnol, Lab BionanoMech Med BNM2 LAB, I-90128 Palermo, Italy
基金
美国安德鲁·梅隆基金会;
关键词
Fractional derivatives; Power-law creep/relaxation; Free energy; Dissipation rate; Material state; HEAT-CONDUCTION; NONLOCAL MODEL; RELAXATION; CALCULUS;
D O I
10.1016/j.ijsolstr.2014.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3156 / 3167
页数:12
相关论文
共 50 条
  • [31] Fractional-order stability analysis of earthquake dynamics
    Pelap, F. B.
    Tanekou, G. B.
    Fogang, C. F.
    Kengne, R.
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1673 - 1687
  • [32] Front dynamics in fractional-order epidemic models
    Hanert, Emmanuel
    Schumacher, Eva
    Deleersnijder, Eric
    JOURNAL OF THEORETICAL BIOLOGY, 2011, 279 (01) : 9 - 16
  • [33] Study on initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems
    Yang, Chuang
    Gao, Zhe
    Miao, Yue
    Kan, Tao
    NONLINEAR DYNAMICS, 2021, 105 (03) : 2387 - 2403
  • [34] Stabilization of Unstable Fixed Points of Fractional-Order Systems by Fractional-Order Linear Controllers and Its Applications in Suppression of Chaotic Oscillations
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 7
  • [35] Fractional-order poromechanics for a fully saturated biological tissue: Biomechanics of meniscus
    Amiri, Fabiana
    Bologna, Emanuela
    Nuzzo, Gianmarco
    Moroni, Lorenzo
    Zingales, Massimiliano
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (11)
  • [36] The swing of synchronization mediated by chimera states in fractional-order coupled Stuart-Landau oscillators
    Sun, Zhongkui
    Xue, Qifan
    Zhao, Nannan
    PHYSICS LETTERS A, 2024, 522
  • [37] Fractional-Order Legendre Functions for Solving Fractional Delay Differential Equations
    Mesgari, Samira
    Barikbin, Zahra
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (06): : 1673 - 1683
  • [38] Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
    Yousri, Dalia
    Mirjalili, Seyedali
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 92
  • [39] Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals
    Kawada, Yusuke
    Yajima, Takahiro
    Nagahama, Hiroyuki
    ACTA GEOPHYSICA, 2013, 61 (06) : 1690 - 1702
  • [40] A Comparative Study of the Fractional-Order Clock Chemical Model
    Srivastava, Hari Mohan
    Saad, Khaled M.
    MATHEMATICS, 2020, 8 (09)