Free energy and states of fractional-order hereditariness

被引:25
|
作者
Deseri, Luca [1 ,2 ,3 ]
Di Paola, Mario [4 ]
Zingales, Massimiliano [4 ,5 ]
机构
[1] Dipartimento Ingn Civile Ambientale & Meccan, I-38123 Trento, Italy
[2] Carnegie Mellon Univ, Dept Civil Environm Engn, Pittsburgh, PA 15213 USA
[3] Methodist Hosp, Res Inst, TMHRI, Dept Nanomed, Houston, TX 77030 USA
[4] Dipartimento Ingn Civile Ambientale Aerospaziale, I-90128 Palermo, Italy
[5] Mediterranean Ctr Human Hlth & Adv Biotechnol, Lab BionanoMech Med BNM2 LAB, I-90128 Palermo, Italy
基金
美国安德鲁·梅隆基金会;
关键词
Fractional derivatives; Power-law creep/relaxation; Free energy; Dissipation rate; Material state; HEAT-CONDUCTION; NONLOCAL MODEL; RELAXATION; CALCULUS;
D O I
10.1016/j.ijsolstr.2014.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3156 / 3167
页数:12
相关论文
共 50 条
  • [21] A fractional-order Maxwell model for non-Newtonian fluids
    Carrera, Y.
    Avila-de la Rosa, G.
    Vernon-Carter, E. J.
    Alvarez-Ramirez, J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 276 - 285
  • [22] PASSIVITY AND PASSIVATION OF FRACTIONAL-ORDER NONLINEAR SYSTEMS
    Han, Zhimin
    Wang, Yi
    Ji, Quanbao
    Alodhaibi, Sultan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [23] Synchronization in a fractional-order model of pancreatic -cells
    Zambrano-Serrano, E.
    Munoz-Pacheco, J. M.
    Gomez-Pavon, L. C.
    Luis-Ramos, A.
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (7-9): : 907 - 919
  • [24] On Sobolev trace inequality for fractional-order derivatives
    Erlin Castillo, Rene
    BOLETIN DE MATEMATICAS, 2010, 17 (01): : 1 - 12
  • [25] A fractional-order approach to cardiac rhythm analysis
    Templos-Hernandez, Diana J.
    Quezada-Tellez, Luis A.
    Gonzalez-Hernandez, Brian M.
    Rojas-Vite, Gerardo
    Pineda-Sanchez, Jose E.
    Fernandez-Anaya, Guillermo
    Rodriguez-Torres, Erika E.
    CHAOS SOLITONS & FRACTALS, 2021, 147 (147)
  • [26] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315
  • [27] FRACTIONAL-ORDER TWO-ELECTRIC PENDULUM
    Baleanu, Dumitru
    Asad, Jihad H.
    Petras, Ivo
    ROMANIAN REPORTS IN PHYSICS, 2012, 64 (04) : 907 - 914
  • [28] Reflection, transmission and energy ratio characteristics of elastic waves in fractional-order viscoelastic nanoplates
    Yang, Chuang
    Yu, Jiangong
    Liu, Cancan
    Elmaimouni, Lahoucine
    ACTA MECHANICA, 2025, 236 (03) : 1863 - 1882
  • [29] Probabilistic response of a fractional-order hybrid vibration energy harvester driven by random excitation
    Sun, Ya-Hui
    Yang, Yong-Ge
    Zhang, Ying
    Xu, Wei
    CHAOS, 2021, 31 (01)
  • [30] Distributed Coordination of Networked Fractional-Order Systems
    Cao, Yongcan
    Li, Yan
    Ren, Wei
    Chen, YangQuan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02): : 362 - 370