Free energy and states of fractional-order hereditariness

被引:25
|
作者
Deseri, Luca [1 ,2 ,3 ]
Di Paola, Mario [4 ]
Zingales, Massimiliano [4 ,5 ]
机构
[1] Dipartimento Ingn Civile Ambientale & Meccan, I-38123 Trento, Italy
[2] Carnegie Mellon Univ, Dept Civil Environm Engn, Pittsburgh, PA 15213 USA
[3] Methodist Hosp, Res Inst, TMHRI, Dept Nanomed, Houston, TX 77030 USA
[4] Dipartimento Ingn Civile Ambientale Aerospaziale, I-90128 Palermo, Italy
[5] Mediterranean Ctr Human Hlth & Adv Biotechnol, Lab BionanoMech Med BNM2 LAB, I-90128 Palermo, Italy
基金
美国安德鲁·梅隆基金会;
关键词
Fractional derivatives; Power-law creep/relaxation; Free energy; Dissipation rate; Material state; HEAT-CONDUCTION; NONLOCAL MODEL; RELAXATION; CALCULUS;
D O I
10.1016/j.ijsolstr.2014.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Complex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3156 / 3167
页数:12
相关论文
共 50 条
  • [1] Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee
    Bologna, E.
    Di Paola, M.
    Dayal, K.
    Deseri, L.
    Zingales, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2172):
  • [2] Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness
    Alotta, Gioacchino
    Bologna, Emanuela
    Zingales, Massimiliano
    SYMMETRY-BASEL, 2020, 12 (04):
  • [3] A non-linear stochastic approach of ligaments and tendons fractional-order hereditariness
    Bologna, E.
    Lopomo, N.
    Marchiori, G.
    Zingales, M.
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 60 (60)
  • [4] A numerical assessment of the free energy function for fractional-order relaxation
    Burlon, Andrea
    Pinnola, Francesco P.
    Zingales, Massimiliano
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [5] A mechanical picture of fractional-order Darcy equation
    Deseri, Luca
    Zingales, Massimiliano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 940 - 949
  • [6] Chimera states in fractional-order coupled Rayleigh oscillators
    Sun, Zhongkui
    Xue, Qifan
    Zhao, Nannan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [7] Implementation of fractional-order transfer functions in the viewpoint of the required fractional-order capacitors
    Tavakoli-Kakhki, Mahsan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (01) : 63 - 73
  • [8] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [9] Review, design, stabilization and synchronization of fractional-order energy resources demand-supply hyperchaotic systems using fractional-order PD-based feedback control scheme
    Soukkou, Ammar
    Soukkou, Yassine
    Haddad, Sofiane
    Benghanem, Mohamed
    Rabhi, Abdelhamid
    ARCHIVES OF CONTROL SCIENCES, 2023, 33 (03) : 539 - 563
  • [10] Stability of fractional-order systems with Prabhakar derivatives
    Garrappa, Roberto
    Kaslik, Eva
    NONLINEAR DYNAMICS, 2020, 102 (01) : 567 - 578