Biodegradation ZK50 magnesium alloy compression screws: Mechanical properties, biodegradable characteristics and implant test

被引:20
作者
Chen, Yen-Ting [1 ]
Hung, Fei-Yi [1 ]
Lin, Yen-Ling [1 ]
Lin, Chia-Yen [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan, Taiwan
[2] Ting Sin Co Ltd, Tainan, Taiwan
关键词
IN-VITRO; AZ31B; MICROSTRUCTURE; VIVO;
D O I
10.1016/j.jos.2020.01.018
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: Magnesium alloy implants have lower stress load and can be absorbed gradually, but their degradation rates are too fast generally. A magnesium alloy contained 5% Zn and 0.5% Zr (ZK50) which have lower degradation rate are designed to be applied to cannulated bone screw. Methods: An oxidation heat treatment of 380 degrees C for 2 h proceeds to modify the ZK50 Mg alloy (ZK50-H). The microstructure observation, degradation tests and Biocompatibility analysis are proceeded between ZK50 and ZK50-H. Finally, a mini-pig implantation test is proceeded to provide a reference of implant application for future pre-clinical evaluation. Results: The heat treatment can improve the mechanical properties. A passive ceramic layer formed after simulated body fluid (SBF) solution immersion can restrict the degradation effectively. The cytotoxicity test shows the initial biosafety of ZK50 Mg alloy. A mini-pig implantation test of bone screw has proceeded to confirm the advanced biocompatibility. The ZK50-H screws can maintain enough support at least 8 weeks which the fracture of bone can get curing. The excellent osteoinduction of ZK50-H has a positive effect to growth of new bones and help the mini-pig regain heal faster in 12 weeks. Conclusion: This study shows ZK50-H Mg alloy screw is a feasible degradation implant and can be carried out the next-step clinical experiments. (C) 2020 Published by Elsevier B.V. on behalf of The Japanese Orthopaedic Association.
引用
收藏
页码:1107 / 1115
页数:9
相关论文
共 27 条
[1]   Bioceramics: Past, present and for the future [J].
Best, S. M. ;
Porter, A. E. ;
Thian, E. S. ;
Huang, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) :1319-1327
[2]   In vivo study of magnesium plate and screw degradation and bone fracture healing [J].
Chaya, Amy ;
Yoshizawa, Sayuri ;
Verdelis, Kostas ;
Myers, Nicole ;
Costello, Bernard J. ;
Chou, Da-Tren ;
Pal, Siladitya ;
Maiti, Spandan ;
Kumta, Prashant N. ;
Sfeir, Charles .
ACTA BIOMATERIALIA, 2015, 18 :262-269
[3]   Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants [J].
Chen, Daoyun ;
He, Yaohua ;
Tao, Hairong ;
Zhang, Yan ;
Jiang, Yao ;
Zhang, Xiaonong ;
Zhang, Shaoxiang .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2011, 28 (03) :343-348
[4]   Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy [J].
Gu, X. N. ;
Li, N. ;
Zhou, W. R. ;
Zheng, Y. F. ;
Zhao, X. ;
Cai, Q. Z. ;
Ruan, Liquan .
ACTA BIOMATERIALIA, 2011, 7 (04) :1880-1889
[5]   Developments in metallic biodegradable stents [J].
Hermawan, H. ;
Dube, D. ;
Mantovani, D. .
ACTA BIOMATERIALIA, 2010, 6 (05) :1693-1697
[6]   Biomedical coatings on magnesium alloys - A review [J].
Hornberger, H. ;
Virtanen, S. ;
Boccaccini, A. R. .
ACTA BIOMATERIALIA, 2012, 8 (07) :2442-2455
[7]   Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer's solution - Long term evaluation by EIS [J].
Jamesh, M. ;
Kumar, Satendra ;
Narayanan, T. S. N. Sankara .
CORROSION SCIENCE, 2011, 53 (02) :645-654
[8]   Dynamic Corrosion and Material Characteristics of Mg-Zn-Zr Mini-Tubes: The Influence of Microstructures and Extrusion Parameters [J].
Lin, Da-Jun ;
Hung, Fei-Yi ;
Liu, Heng-Jui ;
Yeh, Ming-Long .
ADVANCED ENGINEERING MATERIALS, 2017, 19 (11)
[9]   Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J].
Mostaed, E. ;
Sikora-Jasinska, M. ;
Mostaed, A. ;
Loffredo, S. ;
Demir, A. G. ;
Preuitali, B. ;
Mantouani, D. ;
Beanland, R. ;
Vedani, M. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 60 :581-602
[10]   Biodegradable polymers as biomaterials [J].
Nair, Lakshmi S. ;
Laurencin, Cato T. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (8-9) :762-798