共 50 条
A Novel Method of 3D Printing High-Loaded Oxide/H-ZSM-5 Catalyst Monoliths for Carbon Dioxide Reduction in Tandem with Propane Dehydrogenation
被引:26
作者:
Lawson, Shane
[1
]
Farsad, Alireza
[1
]
Adebayo, Busuyi
[1
]
Newport, Kyle
[1
]
Schueddig, Kurt
[1
]
Lowrey, Ethan
[1
]
Polo-Garzon, Felipe
[2
]
Rezaei, Fateme
[1
]
Rownaghi, Ali A.
[1
]
机构:
[1] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, POB 2009, Oak Ridge, TN 37831 USA
基金:
美国国家科学基金会;
关键词:
additive manufacturing;
bifunctional catalysis;
carbon dioxide;
oxidative dehydrogenation of propane;
propane;
propylene;
OXIDATIVE DEHYDROGENATION;
CO2;
ACID;
PERFORMANCE;
STABILITY;
ZSM-5;
D O I:
10.1002/adsu.202000257
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Oxidative propane dehydrogenation using CO2 (CO2-ODHP) is a potential alternative for propylene synthesis. In this study, bifunctional catalysts (V2O5, ZrO2, Cr2O3, and Ga2O3 doped H-ZSM-5) are synthesized through additive manufacturing for CO2-ODHP. Characterization and correlation between the various characterizations and the catalytic results indicates that the direct 3D printing of metal oxides alongside H-ZSM-5 can considerably modify the surface properties and bulk oxide phase dispersion, thus leading to enhanced metal oxide reducibility and exceptional CO2-ODHP performance. Among the metal monoliths, the mixed oxide sample with 5 wt% Cr, 10 wt% V, 10 wt% Zr, 10 wt% Ga and 65 wt% H-ZSM-5 displays the best activity, achieving approximate to 40% propane conversion, 95% propylene selectivity, and zero benzene/toluene/xylene production. Upon eliminating CO2, the catalyst monoliths all retain their long-term stability; however, the propane conversions decrease by approximate to 3% and the propylene selectivities decreased by 5-15%. Nevertheless, all five samples examined here demonstrate exceptional catalytic activities and prolonged stabilities, which are attributed to the even distribution of surface acid sites produced by direct printing of the oxide and zeolite components. Overall, this study presents a novel way of manufacturing bifunctional structured catalysts that exhibit exceptional ODHP performance.
引用
收藏
页数:15
相关论文