BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS

被引:230
作者
Brezzi, F. [1 ,2 ,3 ]
Falk, Richard S. [4 ]
Marini, L. Donatella [2 ,5 ]
机构
[1] IUSS Pavia, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] KAU, Jeddah, Saudi Arabia
[4] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[5] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 04期
关键词
Mixed formulations; virtual elements; polygonal meshes; polyhedral meshes; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS;
D O I
10.1051/m2an/2013138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n - 1) - Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
引用
收藏
页码:1227 / 1240
页数:14
相关论文
共 33 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] [Anonymous], P IMA HOT TOP WORKSH
  • [3] Approximation by quadrilateral finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 909 - 922
  • [4] Quadrilateral H(div) finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2429 - 2451
  • [5] Beirao da Veiga L., MIXED VIRTUAL UNPUB
  • [6] BOFFI D., 2013, MIXED FINITE ELEMENT, V44
  • [7] Brenner S.C., 2008, MATH THEORY FINITE E, V15
  • [8] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Shashkov, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1872 - 1896
  • [9] Brezzi F., 2005, MATH MOD METH APPL S, V15, P533
  • [10] Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15