BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS

被引:233
作者
Brezzi, F. [1 ,2 ,3 ]
Falk, Richard S. [4 ]
Marini, L. Donatella [2 ,5 ]
机构
[1] IUSS Pavia, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] KAU, Jeddah, Saudi Arabia
[4] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[5] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 04期
关键词
Mixed formulations; virtual elements; polygonal meshes; polyhedral meshes; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS;
D O I
10.1051/m2an/2013138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n - 1) - Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
引用
收藏
页码:1227 / 1240
页数:14
相关论文
共 33 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], P IMA HOT TOP WORKSH
[3]   Approximation by quadrilateral finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :909-922
[4]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[5]  
Beirao da Veiga L., MIXED VIRTUAL UNPUB
[6]  
BOFFI D., 2013, MIXED FINITE ELEMENT, V44
[7]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[8]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[9]  
Brezzi F., 2005, MATH MOD METH APPL S, V15, P533
[10]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15