Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics

被引:55
作者
Chen, Ting-Gang [1 ,2 ]
Yu, Peichen [1 ,2 ]
Chen, Shih-Wei [3 ]
Chang, Feng-Yu [1 ,2 ]
Huang, Bo-Yu [1 ,2 ]
Cheng, Yu-Chih [1 ,2 ]
Hsiao, Jui-Chung [3 ]
Li, Chi-Kang [4 ]
Wu, Yuh-Renn [4 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 30010, Taiwan
[3] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu 31040, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei 106, Taiwan
来源
PROGRESS IN PHOTOVOLTAICS | 2014年 / 22卷 / 04期
关键词
anti-reflection; photovoltaic; solar cells; sub-wavelength structures; SOLAR-CELLS; DAMAGE; SI;
D O I
10.1002/pip.2291
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nanostructured crystalline silicon is promising for thin-silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive-ion etching (RIE) techniques for large-area processes. A post-RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current-voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti-reflective properties, where an AM1.5 G spectrum-weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three-dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin-silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 mu m. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:452 / 461
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2005, ASTMG17303
[2]  
Breitenstein O., 1994, Diffusion and Defect Data Part B (Solid State Phenomena), V37-38, P139
[3]   Defect induced non-ideal dark I-V characteristics of solar cells [J].
Breitenstein, O. ;
Bauer, J. ;
Lotnyk, A. ;
Wagner, J. -M. .
SUPERLATTICES AND MICROSTRUCTURES, 2009, 45 (4-5) :182-189
[4]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[5]   Silicon nanowire-array-textured solar cells for photovoltaic application [J].
Chen, Chen ;
Jia, Rui ;
Yue, Huihui ;
Li, Haofeng ;
Liu, Xinyu ;
Wu, Deqi ;
Ding, Wuchang ;
Ye, Tianchun ;
Kasai, Seiya ;
Tamotsu, Hashizume ;
Chu, Junhao ;
Wang, Shanli .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[6]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[7]   Silicon nanowire radial p-n junction solar cells [J].
Garnett, Erik C. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9224-+
[8]   Hausa. [J].
Green, M ;
Reintges, CH .
LINGUA, 2004, 114 (01) :77-91
[9]   Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics [J].
Han, Sang Eon ;
Chen, Gang .
NANO LETTERS, 2010, 10 (03) :1012-1015
[10]   EVAPORATED INHOMOGENEOUS THIN FILMS [J].
JACOBSSON, R ;
MARTENSSON, JO .
APPLIED OPTICS, 1966, 5 (01) :29-+