Radial solutions of a biharmonic equation with vanishing or singular radial potentials

被引:11
|
作者
Badiale, Marino [1 ]
Greco, Stefano [1 ]
Rolando, Sergio [2 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 53, I-20125 Milan, Italy
关键词
Bi-Laplacian operator; Weighted Sobolev spaces; Compact embeddings; Unbounded or decaying potentials; NONTRIVIAL SOLUTIONS; EXISTENCE; COMPACTNESS;
D O I
10.1016/j.na.2019.01.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given three measurable functions V (r) >= 0, K (r) > 0 and Q (r) >= 0, r > 0, we consider the bilaplacian equation Delta(2)u + V(vertical bar x vertical bar)u = K(vertical bar x vertical bar)f (u) + Q(vertical bar x vertical bar) in R-N and we find radial solutions thanks to compact embeddings of radial spaces of Sobolev functions into sum of weighted Lebesgue spaces. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 50 条